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1  Introduction 

In modern financial markets, traders can perform transactions not only in traditional exchanges 

(i.e., lit venues) that are in general organized as limit order markets, but also in alternative trading 

systems such as dark pools, where anonymous and undisplayed orders are executed. For instance, 

the average market share of dark pools in the United States accounted for approximately 44.9% of 

the trading volume in the stock market in June 2017 (as reported by TABB Group).1 Moreover, 

Farley et al. (2018) show that, in the United States, there are stocks reaching a dark market share of 

above 70%. In Europe, as reported by the Best Execution Magazine, the market share of dark pools 

accounted for approximately 20% of the stock trading volume, while the market share of dark pools 

had increased to around 50% for large-in-scale orders by August 2018.2 Nevertheless, despite the 

importance of dark pools in financial markets, we still lack clear understanding of the effect of this 

type of trading activity on market quality. In fact, different empirical studies have shown opposing 

results on the effect of dark pools on market performance.3  

 Is dark trading activity beneficial―or harmful―for the market quality of the whole system? 

How do traders decide whether to trade in traditional lit markets or dark pools? What is the impact 

on market quality of a migration of trading activity from lit markets to dark pools? In this paper, we 

answer these questions by using a dynamic equilibrium model that characterizes a multi-market 

environment, with a lit trading venue (organized as a limit order market) and a dark pool.4 We 

show that the lit-dark trading activity―and its impact on market quality―depends on market 

conditions, which are affected by three intertwined elements: (i) execution priority rules in the 

dark market (e.g., size priority or time priority); (ii) adverse selection in the trading process; and 

                                                 
1 See https://research.tabbgroup.com/report/v15-034-tabb-equity-digest-q2-2017 
2 An order is considered to be large-in-scale when its size is large compared with the market size threshold. 
3 See, e.g., Ray (2010), Ready (2014), Brugler (2015), Degryse et al. (2015), Kwan et al. (2015), Buti et al. 
(2016), Foley and Putniņš (2016), Gresse (2017), Hatheway et al. (2017), Menkveld et al. (2007), and Farley 
et al. (2018). 
4 In general, lit markets are organized as limit order markets. For instance, limit order markets in diverse 
countries represent 85% of the stock exchanges (Jain, 2005). 
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(iii) competition in order submission in each market when traders face execution costs (waiting 

and immediacy costs).  

 To understand how execution priority rules, adverse selection, and traders' competition 

affect lit-dark trading activity, it is important to identify the benefits and drawbacks of dark orders. 

Their advantages and disadvantages may be thought of as a mix between those of market orders 

and those of limit orders in lit markets. First, dark orders have implicit waiting costs that fall 

between the waiting costs of market and limit orders. For instance, if the undisplayed orders that 

are waiting in the dark pool are sell dark orders, a new buy dark order will be executed 

immediately (effectively as a market order). Conversely, if the undisplayed orders that are waiting 

in the dark pool are buy dark orders, a new buy dark order will have to wait in the execution queue 

as a limit order. Nevertheless, waiting costs can be lower for large-in-scale orders in the dark pool 

when there is a size priority rule, than when there is a time priority rule for the execution of orders 

in the dark market. It is important to consider the effect of execution priority rules on market 

quality, because several dark pools (e.g., Turquoise Plato, MS Pool, and Nordic@Mid, among other 

dark pools) use a size priority for the execution of orders, which has attracted a large volume of 

market trading activity. For instance, the trading activity of Turquoise Plato, which uses the size 

execution priority rule, increased its trading volume from £2,001M in July 2012 to £16,297M in July 

2020 (i.e., an increase of 814.4%). 

 Second, dark orders are executed at better prices than market orders, but at worse prices 

than limit orders, as dark orders are in general executed at a price somewhere between the best 

quotes of the prevailing limit order market (e.g., at the midquote or the volume-weighted average 

price, VWAP). Third, unexecuted dark orders waiting in the dark pool also have the disadvantage 

that they can be ‘picked off’, in a similar way to unexecuted limit orders. This is because, due to 

cognitive limits, traders cannot instantaneously modify unexecuted dark orders when the asset 
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value moves against them. Thus, other 𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑛𝑔 traders can profit by picking-off unexecuted dark 

orders in unfavorable positions (i.e., there is adverse selection).5  

 Consequently, the effects of execution priority rules, traders' competition, and adverse 

selection are all important aspects to consider when examining the impact of the introduction of a 

dark pool running in parallel to a limit order market. Moreover, it is important to note that these 

three elements endogenously interact with each other. For instance, a size priority rule may 

naturally induce a migration of traders with large orders to the dark pool, which may reduce 

traders' competition in order submission in the lit market. A reduction in traders' competition 

should increase the bid-ask spread in the lit venue. However, a growth in the bid-ask spread should 

diminish the chances of limit orders in the best quotes being mispriced after changes in the asset 

value; hence, there will be a reduction in the picking-off risk in the lit market. This reduction in the 

picking-off risk in the lit market may again attract trading activity back to the lit venue from the 

dark pool. Consequently, the effects of execution priority rules, adverse selection, and traders' 

competition should all be taken into account simultaneously in analyzing the impact of dark pools 

on market quality. 

 In this paper, we introduce a dynamic equilibrium model for a dark pool running in parallel 

to a limit order market, in which we simultaneously include different execution priority rules for 

dark orders, adverse selection, and traders' competition in order submission for all types of orders 

and all types of traders. This study is distinct from, and complements, the current theoretical 

literature on the interaction between a dark pool and a limit order market, since previous studies 

do not consider all three of these elements together.6 

 Our model describes a multi-market environment with an asset whose fundamental value 

evolves stochastically, and which can be traded in either a limit order market or a dark pool. Our 

                                                 
5 One may argue that cognitive limits do not exist for high-frequency trading (HFT) firms. However, HFT firms 
still suffer from cognitive limits since computers also require processing time to analyze new information, 
there are delays in order transmissions, and there are processing times in the exchanges. 
6 See, e.g., Buti et al. (2017), Beyona et al. (2017), and Brolley (2019). 
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framework is based on the model of a single limit order market of Goettler et al. (2005, 2009), 

which is extended to a multi-market setup that includes two market types: a dark pool and a limit 

order market. There are multiple traders who compete in order submission (i.e., there is trader 

competition). Traders can submit orders to the lit market (limit orders or market orders) or to the 

dark pool (undisplayed dark orders). In addition, traders face a cost of delaying that represents the 

cost of monitoring the market until an order is executed (i.e., there is a waiting cost), which also 

incentivizes competition for quick executions.  

Traders can modify unexecuted limit orders and unexecuted dark orders. However, traders 

have cognitive limits, and therefore cannot instantaneously modify their unexecuted limit and dark 

orders when market conditions change. Cognitive limits are modeled by allowing traders to only re-

enter at random times to modify their unexecuted orders. Thus, other traders in the market can 

pick-off unexecuted dark orders in unfavorable positions, because these cognitive limits induce 

short periods of asymmetric information among different participants (i.e. there is adverse 

selection). This exposure to picking-off risk is applicable even in today’s automated markets 

because there is no way to ensure that a limit order trader will be able to cancel or modify her 

order before the fastest marketable order arrives. 

Traders have different private reasons to trade, which define their liquidity needs in terms 

of the order direction (i.e., to buy or to sell the asset) and how important it is to them to trade 

quickly. Traders also have different order sizes, and therefore different potential liquidity impacts 

on the market. Moreover, the model allows us to specify the execution priority rules in the dark pool; 

thus, we implement model setups with either a time execution priority or a size execution priority 

for dark orders. 

 We find that asset volatility is the main determinant of the submission decision regarding 

limit, market, and dark orders. This is because asset volatility affects traders' competition, adverse 

selection, and execution speeds in the lit and dark markets. Primarily, we find that the migration of 
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the trading activity from the lit market to the dark pool has a humped shape as a function of the 

asset volatility, with the maximum value of dark trading activity occurring at an intermediate level 

of volatility. This is generated by the strategic behavior of different trader types when the asset 

volatility increases. 

 We show that speculators (i.e., traders without large private reasons for trading quickly) 

strategically prefer limit orders when the asset volatility is low. However, in the case of a medium 

level of asset volatility, speculators prefer to use the dark pool to execute picking-off strategies 

through dark orders, as they provide higher payoffs than limit orders. Moreover, speculators are 

less likely to profit from a similar picking-off strategy carried out through market orders in the lit 

market under a medium level of volatility. As the asset volatility is not high enough, it is unlikely 

that speculators will find limit orders in unfavorable positions in relation to the asset value, since 

they have less competitive prices than waiting dark orders. When asset volatility is high, we show 

that speculators change their order submission strategies and prefer to submit more market 

orders. In this case, speculators make higher profits by searching for unexecuted limit orders in the 

lit market that are highly exposed to picking-off risk when the asset changes against them.  

 We also observe that the strategic behavior of other trader types also depends on volatility. 

Specifically, liquidity traders (i.e., traders with large private reasons for trading as soon as possible) 

have preferences for market orders when the asset volatility is low. In the case of a moderate level 

of volatility, liquidity traders change their trading behavior and begin to prefer the dark pool. This 

is because the asset can often take values that make market orders less attractive than dark orders, 

since dark orders provide better execution prices than market orders. Moreover, in this scenario, 

there is an increase in the execution probability of dark orders, which induces liquidity traders to 

migrate more to the dark pool. This increase in the execution probability of dark orders is due to 

the competition amongst the same liquidity traders in the dark pool, and also due to the additional 

competition amongst speculators generated by their migration to the dark market under a 
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moderate asset volatility (i.e., liquidity attracts liquidity). When the asset volatility is high, there are 

high chances of the asset value moving against the prices of both dark orders and market orders, 

which can be compensated by the better prices offered by limit orders. Consequently, liquidity 

traders prefer to submit more limit orders under a high-volatility scenario. Moreover, the use of 

limit orders is encouraged by the trading behavior of speculators in the lit market when volatility is 

high, which increases trader competition and thus the execution probability of limit orders.7,8 

 These changes in order preferences made by different trader types under changes in asset 

volatility are consistent with several studies of limit order markets, which show that there is no 

single type of agent who provides or takes liquidity (e.g., Goettler et al., 2009; Li et al., 2019; 

Bernales, 2019; and Ladley, 2020). In contrast to these studies, we show that changes in order 

preferences are not only observed in a pure limit order market, but also in a lit-dark market 

environment.9 

 Furthermore, we show that the migration of trades to the dark pool also has a humped 

shape, as a function of both the bid-ask spread in the lit market and liquidity costs in the whole 

system.10 This result is due to two main effects: Firstly, as expected, we find that the bid-ask spread 

in the lit market and liquidity costs in the whole system are positively related to the asset volatility. 

In both markets, the picking-off losses are larger when the asset volatility increases, since traders 

cannot react quickly to large asset movements. Secondly, as explained previously, there is a non-

linear (hump-shaped) relationship between the migration of trades to the dark pool and asset 

volatility. Therefore, the interaction of these two effects results in the migration of trades to the 

                                                 
7 This is interesting because liquidity traders are paying a waiting cost and a picking-off cost with dark orders 
(limit orders) so as to obtain liquidity when the asset volatility is moderate (high), instead of paying the bid-
ask spread with market orders. 
8 This result is consistent with Zhu (2014), who also finds hump-shaped dark pool participation as a function 
of the asset volatility, but importantly, in his model, the dark pool interacts with a lit market organized as a 
dealer market, as opposed to the limit order book we use in our model. 
9 We also show that this behavior is observed in other types of traders who fall somewhere between 
speculators and liquidity traders in terms of their private values. 
10 Thus, empirical studies that use linear regressions may fail to capture the relationship between dark 
market activity, and asset volatility and market liquidity. 
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dark pool also being hump-shaped as a function of liquidity costs. This result is consistent with Ray 

(2010), who empirically shows that there is a hump-shaped association between dark trading 

activity and the bid-ask spread. Most importantly, this result may explain the mixed findings in the 

empirical literature regarding the relationship between the level of trading activity in the dark pool 

and market liquidity (see, e.g., Ray, 2010; Degryse et al., 2015; Kwan et al., 2015; Buti et al., 2016; 

Foley and Putniņš, 2016; Gresse, 2017; Hatheway et al., 2017; Menkveld et al., 2017; and Farley et 

al., 2018).  

 The bid-ask spread of the lit market is larger when the dark pool is introduced than when 

there is only the lit market. This is because the migration of trading activity from the lit market to 

the dark pool increases market fragmentation and negatively affects the liquidity of the lit market. 

Previous theoretical studies describe different effects (negative or positive) of dark pool activity on 

the lit market liquidity, depending on whether the migration is due to specific types of traders 

assumed to submit limit or respectively market orders in the lit market (e.g., Buti et al., 2017; 

Beyona et al., 2017; and Brolley, 2019). In contrast, in our model, any trader type (i.e., speculators 

or liquidity traders) can choose to submit limit or market orders in the lit market, where traders' 

submission preferences endogenously depend on the asset volatility. Therefore, any type of 

migration of trading activity to the dark pool induces damage to the liquidity of the lit market, since 

order migrations always involve liquidity providers and liquidity takers.  

 Welfare is reduced in a lit-dark market environment compared to when there is a lit market 

alone, independent of the asset volatility. This result is consistent with previous studies (e.g., 

Pagano, 1989), in which market fragmentation diminishes welfare in the presence of market 

frictions. A higher fragmentation of trading activity between lit and dark venues increases the 

liquidity costs of the whole system, since traders' competition is reduced in each individual market, 

in relation to the case of a single trading venue where all trading activity is concentrated.  
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 Most importantly, in terms of policy implications, we show that a size execution priority 

rule in the dark pool has several benefits. The size execution priority rule for dark orders improves 

liquidity and welfare, and reduces the picking-off risk, of the whole lit-dark system relative to the 

case of a time execution priority rule. This is due to, as expected, the reduction in the waiting time 

(i.e., liquidity costs) of large traders who submit orders to the dark pool, under a size execution 

relative to a time execution priority rule for dark orders. 

 Speculators are better off when a dark pool is introduced than when there is just a lit 

market, whereas liquidity traders are worse off. On the one hand, the dark pool offers speculators 

an additional venue in which to operate a picking-off strategy against other traders. On the other 

hand, the market fragmentation observed when there is a dark pool and a lit market increases the 

liquidity costs of the whole system, which reduces the payoffs of liquidity traders. In addition, we 

find that the payoffs of speculators go down when there a size execution priority rule in relation to 

a time execution priority rule for dark orders, since a size execution priority reduces speculators’ 

chances of picking off orders from large traders. 

 Interestingly, we show that large traders are worse off when the dark pool is introduced, 

relative to the case where there is only a lit market, even if there is a size execution priority rule in 

the dark pool. This is due to the higher liquidity costs that fragmentation induces in the whole 

market, which strongly affects large traders who want to trade large orders as soon as possible. 

This result is striking, since it goes against the traditional view of the benefits of dark pools for large 

traders, whereby the dark market should reduce the price impact of large orders, as dark orders are 

anonymous and not displayed in the dark pool.11  

                                                 
11 For instance, the SEC, in the Regulation of NMS Stock Alternative Trading System (Release No. 34-76474; 
File No. S7-23-15]), states, "Dark pools originally were designed to offer certain market participants, 
particularly institutional investors, the ability to minimize transaction costs when executing trades in large size 
by completing their trades without prematurely revealing the full extent of their trading interest to the broader 
market". 
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 Finally, despite the fact that a dark pool reduces the price impact of large orders as they are 

undisplayed and large orders may have higher execution priorities, we show that large traders do 

not necessarily always prefer to send orders to the dark pool over the lit market. For instance, large 

traders prefer the lit market to the dark pool when the level of trading activity in the dark pool is 

low (i.e., when the asset volatility is low or high), as in this case the waiting costs would be larger in 

the dark pool.  

It is important to note that our focus is on providing a relatively simple but realistic model, 

in order to understand the behaviour of the dark-lit trading activity under different execution 

priority rules in the dark pool, adverse selection, and traders' competition. We recognize that our 

model is far from perfect (as any theoretical model), thus the dark-lit trading activity may be 

affected by other elements outside the scope of our modeling setup such as behavioral issues and 

market regulations, amongst other factors. Therefore, the objective of our study is not to propose a 

better model for the dark-lit trading activity, but to provide some light to understand the impact of 

dark pools under changes in market conditions. 

 Our paper is structured as follows. We conduct a literature review in Section 2. We outline 

our model in Section 3. In Section 4, we describe the traders' behavior in different scenarios. In 

Section 5, we analyze traders' payoffs and market welfare. In Section 6, we show empirical 

implications of dark pools in terms of market liquidity. Finally, Section 7 concludes. 

 

2 Literature Review 

 This study is part of a growing literature on the effect of dark pools on financial markets. 

Empirical studies have shown that the trading activity in the dark pool is negatively related to 

market liquidity (see, e.g., Weaver, 2014; Ready, 2014; Degryse et al., 2015; Kwan et al., 2015; and 

Hatheway et al., 2017). At the same time, other studies report a positive relationship between the 

trading activity in the dark pool and market liquidity (Brugler, 2015; Buti et al., 2016; and Gresse, 
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2017). In addition, there are studies showing a mixed relationship between dark trading activity 

and liquidity (see, e.g., Ray, 2010; Foley and Putniņš, 2016; Menkveld et al., 2017; and Farley et al., 

2018). Our paper provides a potential explanation for these conflicting empirical results, as we 

present evidence that the trading activity in the dark pool is hump-shaped as a function of market 

liquidity. This is because the migration from the lit market to the dark pool has a non-linear 

relationship with the main variables that describe the market conditions.  

 Our paper is particularly related to the theoretical literature that examines the interaction 

between the trading activity in a dark pool and that in a lit market organized as a limit order book. 

However, these studies do not simultaneously consider: (i) different execution priority rules; (ii) 

adverse selection; and (iii) traders’ competition in order submission for all types of orders and all 

types of traders. For example, Buti et al. (2017) develop a theoretical model of a limit order market 

with a dark pool, in which there is competition among traders in order submission, with small and 

large traders who can split their orders. They find that liquidity and welfare decrease when a dark 

pool is added to a limit order market. However, they do not consider either the impact of asset 

volatility (which may generate a picking-off risk) or the effect of the size execution priority rules in 

the dark market that is particularly relevant for large traders. 

 Beyona et al. (2017) and Brolley (2019) present models in a dark-lit environment under 

adverse selection. These models, however, do not consider different execution priority rules. 

Moreover, in both models, some trader types are constrained in terms of the types of orders they 

can submit, which affects the traders' competition in the system. For instance, in Beyona et al. 

(2017), liquidity traders can only submit market orders, while other traders cannot provide 

liquidity in the dark pool. Thus, the dark pool has an exogenous probability of execution, which is 

not obtained in equilibrium. In Brolley (2019), 'professional' liquidity providers can only submit 

limit orders in the lit market and in the dark pool, while other investors cannot provide liquidity in 

the dark pool. Thus, the liquidity costs of each market do not completely capture modifications in 
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the level of competition in order submission in each market, due to a potential migration of trading 

activity (of different trader types) between the dark pool and the limit order market. One 

interesting feature of Brolley (2019) is that he presents a model with non-midpoint dark pool 

trading in which the dark pool offers an improvement upon the prevailing displayed quote by a 

percentage of the bid-ask spread. Thus, our study complements the current theoretical literature on 

the interaction between dark pools and limit order markets. We contribute to this literature by 

introducing a theoretical model simultaneously including different execution priority rules, adverse 

selection, and trader competition. Including these elements is important, since they interact with 

each other, and hence the effect of dark pools on market quality is not straightforward to 

determine. 

 Our paper is also related to theoretical studies in which a dark pool interacts with a lit 

market organized as a dealer market (see, e.g., Hendershott and Mendelson, 2000; Degryse et al., 

2009; Ye, 2012; Zhu, 2014; Iyer et al., 2018; and Ye, 2016). From this literature, our paper is 

particularly close to, and complements, the findings of Zhu (2014). Similarly to our study, he finds a 

hump-shaped dark pool participation as a function of asset volatility, but in his model the reason 

for this hump-shaped relationship is different. In his model, there is a dark pool together with a 

dealer market, in which there is a single risk-neutral liquidity provider who sets competitive bid 

and ask prices in a two-period setup. In this framework, he shows that asset volatility increases the 

participation of liquidity traders in the dark pool up to an intermediate level of volatility 𝜎⋄. When 

the asset volatility is higher than 𝜎⋄, informed traders also begin to trade in the dark pool, which 

results in many liquidity traders with low delay costs migrating out of the dark pool, thus reducing 

the dark pool participation. In contrast, in our model, the dark pool interacts with a lit venue that is 

characterized as limit order market, where any trader can be a liquidity provider or a liquidity 

taker in the lit market (by submitting limit or market orders, respectively) or a dark trader in the 

dark pool (by submitting a dark order). Thus, potential liquidity providers in the lit market also 
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make optimal order submissions and modifications in a multi-period trading game. Most 

importantly, and complementary to Zhu (2014), the hump-shaped dark pool participation as a 

function of asset volatility is obtained in our model, even if there are no explicit informed investors 

in the system. This is because such a hump-shaped relationship is generated through non-linear 

strategic behaviors by different trader types (including speculators and liquidity traders) in terms 

of their order submissions, depending on levels of picking-off risk and traders' competition in each 

venue, which is affected by the asset volatility.  

Our paper is also related to theoretical studies on the dark-lit trading activity, in which lit 

markets are organized either as a sequential-double-auction market (see, e.g., Antill and Duffie, 

2017), or as an infinite trading crowd of competitive and infinitesimal liquidity providers (see, e.g., 

Menkveld et al., 2017). In this context, our study is particularly connected to Menkveld et al. (2007), 

who analyze how immediacy requirements of traders affect the dark-lit trading activity. Menkveld 

et al. (2007) argue that if traders have reduced immediacy requirements, traders would prefer dark 

pools since dark orders have the lowest execution costs although also lowest immediacy. 

Conversely, if traders have large immediacy requirements they would prefer lit markets because lit 

orders have the highest execution costs but the highest immediacy. Our work complements 

Menkveld et al. (2007) given that we also include different immediacy requirements for the agents 

in our model (which are modeled by the use of three elements: the cost of delaying; traders’ private 

values; and trader order sizes), but we aim to answer different questions since our modeling setup 

includes additional features. Thus, differently but complementary to Menkveld et al. (2007), we 

examine in our study the dark-lit trading activity under different execution priority rules in the 

dark pool, where there is adverse selection and a finite number of liquidity providers that face 
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traders' competition, where dark trading activity has a non-linear relationship with asset volatility 

and liquidity.12 

 Our paper is connected to theoretical studies that analyze the effect of fragmentation on lit 

markets (i.e., without dark pools) which are partially or completely organized as limit order 

markets. For instance, Parlour and Seppi (2003) analyze competition between a pure limit order 

book and a specialist market, while Foucault and Menkveld (2008) present a model to examine a 

fee-based competition between limit order markets. However, differently to our model, Parlour and 

Seppi (2003) and Foucault and Menkveld (2008) do not consider adverse selection in order 

submission when they analyze fragmentation. Baldauf and Mollner (2018) show that fragmentation 

intensifies adverse selection, despite the fact that exchange competition induces a downward 

pressure on trading fees. Nevertheless, Baldauf and Mollner's (2018) model imposes restrictions on 

who can submit limit orders, which affects traders' competition in liquidity provision. This is 

different to our study, where any trader type can submit limit and market orders (and even dark 

orders), thus any trader type can migrate between the lit market and the dark pool. 

 Our paper is also associated with empirical studies in which fragmentation is analyzed, but 

without considering markets organized as dark pools. These studies similarly report mixed findings 

on the effect of fragmentation on market quality. There are empirical studies that show that 

fragmentation increases liquidity (see, e.g., Branch and Freed, 1977; Hamilton, 1979; Battalio, 1997; 

Fink et al., 2006; Foucault and Menkveld, 2008; O'Hara and Ye, 2011; Menkveld, 2013; and He et al., 

2015), whilst there are other empirical studies that report reductions in liquidity due to 

fragmentation (see, e.g., Bessembinder and Kaufman, 1997; Arnold et al., 1999; Amihud et al., 2003; 

Hendershott and Jones, 2005; Bennett and Wei, 2006; and Nielsson, 2009). In addition, there are 

                                                 
12 In addition, our paper is associated with the literature on 'workups' trading mechanisms in Treasury 
markets, in which buyers and sellers successively increase, or ‘work up,’ the quantities of an asset that are 
exchanged at a fixed price (see, e.g., Duffie and Zhu, 2017; and Back and Barton, 2019). 
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empirical studies that show a mixed relationship between fragmentation and liquidity (see, e.g., 

Boneva et al., 2016; and Haslag and Ringgenberg, 2017).  

 Finally, our paper is also related to studies that examine different execution priority rules. 

For instance, Cohen et al. (1985), Angel and Weaver (1998), Panchapagesan (1998), and Cordella 

and Foucault (1999) show that a price/time priority rule induces price competition, which 

generates smaller spreads. However, to the best of our knowledge, there are no studies that explore 

different priority rules in dark pools. 

 

3 The Model  

3.1  Trading environment 

 We consider an economy containing an asset that can be traded in either a limit order 

market (also referred to as a lit market, henceforth, LM) or a dark pool (henceforth, DP).13 The 

economy reflects a dynamic trading game in continuous time, with several traders who 

asynchronously arrive and compete in order submissions in each market. The arrival of traders 

follows a Poisson process with intensity 𝜆. The fundamental value of the asset, 𝑣௧, is stochastic, with 

changes in value that are also described by a Poisson process, with intensity 𝜆௩. The asset value can 

go up or down by one tick with equal probability, when a value change is observed in the Poisson 

process.  

 

3.2  The limit order market (LM) 

 Traders can submit limit and market orders (in the LM), and dark orders (in the DP). In the 

case of the LM, limit orders wait to be executed in a limit order book. The limit order book 

associated with the LM, 𝐿௧, is characterized by a discrete set of prices {𝑝௜}௜ୀିே
ே , where 𝑝௜ < 𝑝௜ାଵ and 

𝑁 is a finite number. As in real markets, 𝑑 = 𝑝௜ − 𝑝௜ିଵ is the tick size. In 𝐿௧, there is a potential 

                                                 
13 All variables used in our study are described in Table A1 of Appendix A. 
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queue of shares from unexecuted limit orders, 𝑙௧
௜ , at time 𝑡 for each price 𝑝௜ . A positive number for 𝑙௧

௜  

denotes buy limit orders, while a negative number denotes sell limit orders. The best bid price and 

the best ask price are then given by 𝐵௧= max൛𝑝௜| 𝑙௧
௜ > 0ൟ and 𝐴௧= min൛𝑝௜| 𝑙௧

௜ < 0ൟ, respectively.14 

 

3.3  The dark pool (DP) 

 In the case of the DP, traders can submit dark orders that are executed at the midquote of 

the lit market’s best bid and ask prices, 𝑀௧ = 0.5(𝐴௧ + 𝐵௧). In the DP, there is a single queue of 

shares from unexecuted dark orders, 𝑘௧, at time 𝑡, for the single price 𝑀௧.15 A positive value of 𝑘௧ 

denotes buy dark orders, and a negative value of 𝑘௧ indicates sell dark orders, which have not yet 

been executed. Thus, for instance, if a new trader at time 𝑡 submits a sell dark order for one share 

and 𝑘௧ is positive (i.e., there are unexecuted buy dark orders that are waiting in the DP), the new 

sell dark order is immediately executed at price 𝑀௧. Conversely, if 𝑘௧ is negative, the new sell dark 

order for one share will enter the queue of unexecuted sell dark orders of the DP. If 𝑘௧ = 0, the dark 

queue is empty and any order arriving will enter the queue. Moreover, as a robustness check, we 

also use the volume-weighted average price (VWAP) as the execution price in the dark pool in 

unreported results. The findings observed under the VWAP in the dark pool are qualitatively 

similar to the results reported here. 

 

3.4  Opacity and execution priorities 

 Traders can observe the complete limit order book, 𝐿௧, and its changes. However, the DP is 

opaque in the sense that traders cannot observe the queue of shares from unexecuted dark orders, 

𝑘௧. In the LM, limit orders are executed according to a price-time execution priority. This means 

                                                 
14 In the market, 𝐵௧ = −∞ or 𝐴௧ = +∞ represents the case where the limit order book either has no 
unexecuted buy limit orders or no unexecuted sell limit orders, respectively. 
15 In the case that the limit order book is empty on either the buy side or the sell side, then 𝑀௧ = 0.5(𝐴௧ି௧ಲ +
𝐵௧ି௧ಳ), where 𝑡 − 𝑡஺ and 𝑡 − 𝑡஻ are the last times at which the buy and sell sides of the book respectively 
were not empty. 
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that buy limit orders at higher prices, and sell limit orders at lower prices, have priority for their 

execution, while unexecuted limit orders at the same price have a higher execution priority if they 

were submitted earlier. In contrast, in the DP, the waiting unexecuted dark orders are executed 

through either a size-time priority (which is referred to simply as 'size priority'), or a pure-time 

priority (which is simply termed 'time priority'). Under the size priority rule, dark orders of a larger 

size (i.e., dark orders that involve more shares) have higher execution priority, and between any 

two dark orders of the same size, the one submitted earlier has higher execution priority. Under the 

time priority rule, dark orders submitted earlier always have higher priority, regardless of their 

size. 

 

3.5  Order modifications, picking-off risk and waiting costs 

 As in real markets, traders have cognitive limits, in the sense that they cannot observe the 

current asset value, and cannot continuously monitor market conditions. Thus, the asset value, 𝑣௧, is 

observed by all traders with a time lag Δ௧. In addition, since traders cannot continuously monitor 

market conditions, traders can only re-enter at random times to modify their unexecuted orders. 

Thus, the re-entry process, which traders follow to perform potential modifications of their 

unexecuted orders (unexecuted limit orders and unexecuted dark orders), is described by a Poisson 

process with intensity 𝜆௥.  

 Due to cognitive limits, traders are exposed to picking-off risk regarding their unexecuted 

orders that are waiting in either the LM (i.e., unexecuted limit orders) or the DP (i.e., unexecuted 

dark orders). For instance, suppose trader 𝒾 submits a sell limit order for one share to the LM at a 

new, more aggressive price 𝐴∘ (i.e., 𝐴∘ is the new ask price). Suppose that, immediately after the 

limit order submission from trader 𝒾, the fundamental asset value 𝑣∘ goes up to a level above 𝐴∘ 

(i.e., 𝐴∘ < 𝑣∘). Then, the sell limit order is now in an incorrect position in relation to the asset value, 

as trader 𝑖 is trying to sell the asset at a price lower than 𝑣∘. However, given that trader 𝒾 has 
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cognitive limits, she does not instantaneously realize that her limit order is at an unfavorable price. 

Thus, a second trader 𝒿 can submit a buy market order, with the objective of picking off the sell 

limit order from trader 𝒾. As a result, trader 𝒾 has a loss equal to (𝐴∘ − 𝑣∘), and trader 𝒿 receives a 

profit equal to (𝑣∘ − 𝐴∘), from the transaction.  

 In the case that a trader re-enters to modify an unexecuted order, potential order 

modifications imply benefits and drawbacks. In term of benefits, modifications of unexecuted 

orders provide traders with the opportunity of submitting at a better price, if they are aware of 

changes in market conditions. For instance, modifications reduce the picking-off risk, given that 

traders can modify their unexecuted mispriced orders (of course, only if the trader detects in time 

that the asset value has changed against their orders). Conversely, modifications to unexecuted 

orders have the drawback that traders may lose their priority in the queue for execution, which 

should increase their execution waiting time. This entails a cost for traders. Thus, to consider such 

waiting costs, traders' profits are subject to a discount rate 𝜌 from the time of the trader’s first 

entry to the point of order execution. This discount rate is not the money time-value but represents 

the costs of monitoring unexecuted orders.  

 

3.6  Trader types 

 Traders are risk-neutral, but heterogeneous in relation to two features: the traders' 

exogenous reasons for trading, and their order size requirements. In relation to the heterogeneity 

in the traders' exogenous reasons for trading, each trader arrives with a private value, 𝛼, which will 

be obtained after they have traded each asset share. The private value 𝛼 is known by each trader 

and is constant over time. The private value reflects their intrinsic reasons for trading (exogenous 

to the potential benefits of the transaction), such as liquidity needs, hedging requirements, and/or 

tax benefits. The private value of each trader is drawn from a discrete and finite vector {𝛼ଵ, 𝛼ଶ, ..., 

𝛼௚} with a probability distribution 𝐹ఈ. The private value of a trader influences both the direction 



18 
 

and aggressiveness of her order submission. If 𝛼 is positive (negative), a trader is willing to submit 

a buy (sell) order to obtain her private value after the transaction. Meanwhile, the absolute level of 

the private value (i.e., |𝛼|) also affects how quickly a trader wants to trade, and hence the 

aggressiveness of her order submission. If |𝛼| is very large, a trader will want to trade the asset 

without delay, with the objective of reducing a potentially large waiting cost due to the discount 

rate 𝜌, which would be applied to her large private value.  

  In terms of the traders' order size requirements, when a trader with private value 𝛼 arrives 

in the economy, there is a probability 𝛾ఈ  that she will be a small trader, and a probability 1 − 𝛾ఈ  that 

she will be a large trader. A small trader submits an order for one share, while a large trader 

submits a bulk order for 𝑄 > 1 shares. Thus, large traders have larger orders (which are also 

referred to as 'large-in-scale' orders). Upon arrival, each small (large) trader stays in the economy 

until her share (shares) is (are) traded; after that, she leaves the economy permanently. 

 It is important to notice that, if a large trader submits an order for 𝑄 shares, this order is not 

necessarily executed as one whole transaction. For instance, a large trader with a sell limit order for 

𝑄 shares at the ask price could see their order partially executed if a small trader were to submit a 

buy market order for one share. After that transaction, the sell limit order of the large trader would 

have 𝑄 − 1 shares available to trade, and the trader would stay in the market until she had traded 

the remaining shares in her order. 

 

3.7  The trader’s Bellman equation 

 A trader with given characteristics (i.e., her private value and whether she is a small or a 

large trader) makes a trading decision after observing market conditions, where the trader's 

characteristics and the market conditions are described by a set of states 𝑠 ∈ {1,2, … , 𝑆}. Each state 

at time 𝑡 is defined by (i) the agent’s private value; (ii) whether the trader is small or large in terms 

of her order size requirements; (iii) the contemporaneous limit order book, 𝐿௧, in the LM (which 



19 
 

also includes the price in the DP, since 𝑀௧ = 0.5(𝐴௧ + 𝐵௧)); (iv) if the trader has shares that have not 

been traded from a previously submitted order (in the LM or the DP), the status of her current 

order (i.e., in which market the unexecuted order is waiting, whether it is a buy or sell order, the 

submission price, and the order priority of each remaining share in the order book in the case of 

unexecuted limit orders). The asset value observed by the trader, 𝑣௧ି୼୲, is not an element that 

characterizes a given state because, similarly to Goettler et al. (2009), we center the limit order 

book of the LM on the asset value observed by traders (i.e., 𝑝଴ = 𝑣௧ି୼୲ in 𝐿௧). Thus, the prices of all 

orders (including dark orders, as the transaction price in the DP is the midquote of the LM) are 

relative prices, with respect to the trader's beliefs about the asset value. Hence, the information 

about 𝑣௧ି୼୲ is implicit in the information about the limit order book. Most importantly, by using 

relative prices, we greatly decrease the dimensionality of the state space, because (as explained 

above) traders think in relative values rather than in terms of absolute price levels.  

 Suppose that the optimal decision of a trader in state 𝑠 is 𝑎 ∈ 𝒜(𝑠), where 𝒜(𝑠) is the set of 

feasible trading decisions that the trader can take in state 𝑠. When a trader arrives at the market for 

the first time, that decision includes (i) the venue preferred for an order submission (LM or DP); (ii) 

the direction of the order (buy order or sell order); (iii) the type of order if the LM is selected 

(market order or limit order); and (iv) the submission price if the trader submits a limit order. In 

addition, when traders re-enter to potentially modify unexecuted orders, they then have to decide 

(i) to modify or keep unchanged the unexecuted order; (ii) if they decide to modify the unexecuted 

order, the venue in which to submit the new order; (iii) the direction of the new order (new buy 

order or new sell order); (iv) in the case of a new submission in the LM, the type of the new order 

(market order or limit order); and (v) the submission price in the case of a new limit order.  

 To simplify the notation, let the trader's time of arrival be zero. Additionally, let 

𝜂(ℎ௤|𝑎, 𝑠) be the probability density for share 𝑞 of the order being traded at time ℎ௤ , where 𝑞 is a 

share indicator, with 𝑞 = {1,2, … , 𝑄∗} and 𝑄∗ is the number of remaining shares of the order to be 
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traded, with 𝑄∗ ≤ 𝑄. The probability 𝜂(∙) takes into account potential future states and optimal 

potential decisions performed by competing traders until the execution of the order. Thus, the 

expected payoff of decision 𝑎 in state 𝑠, if the shares of the trader are traded before her re-entry at 

time ℎ௥, is given by 

𝜋(ℎ௥, 𝑎 𝑠) = ෍ න න 𝑒ିఘ௛೜ ቂቀ𝛼 + 𝑣௛೜ − 𝑝௤ቁ 𝑥ቃ
ஶ

ିஶ

௛ೝ

଴
𝛾 ቀ𝑣௛೜|ℎ௤ቁ 𝜂൫ℎ௤ห𝑎, 𝑠൯𝑑𝑣௛೜𝑑ℎ௤

ொ∗

௤ୀଵ

 (1)

where 𝑝𝑞 is the order's price that is a component of the trading decision (which is equal to the 

midquote for dark orders), 𝑥 is also an element of the trading decision and describes the order 

direction (𝑥 = 1 if the order is a buy order, and 𝑥 = −1 if it is a sell order). In addition, 𝛾 ቀ𝑣ℎ𝑞|ℎ௤ቁ is 

the density function of the asset value at time of execution ℎ௤ ∈ [0, ℎ௥] of share 𝑞 of the trader's 

order.16  

 In equation (1), ቀ𝛼 + 𝑣ℎ𝑞 − 𝑝ቁ 𝑥 is the instantaneous payoff obtained when share 𝑞 is 

traded.17 Thus, using equation (1), we can construct the Bellman equation of the optimization 

problem faced by each trader: 

𝑉(𝑠) = max
௔∈𝒜(௦)

න ൥𝜋(ℎ௥, 𝑎 𝑠) + 𝑒ିఘ೏௛ೝ න 𝑉൫𝑠௛ೝ൯𝜓൫𝑠௛ೝห𝑎, 𝑠, ℎ௥൯𝑑𝑠௛ೝ
௦೓ೝ∈𝒮

൩
∞

଴
𝑑𝑅(ℎ௥). (2)

Here, 𝜓൫𝑠௛ೝห𝑎, 𝑠, ℎ௥൯ reflects the probability that state 𝑠௛ೝ is observed at ℎ௥, where 𝒮 is the set of 

potential states. Furthermore, 𝑅(ℎ௥) is the cumulative probability distribution of the time at which 

the trader re-enters the economy.  

 
                                                 
16 It is important to note that the value of the submission price, 𝑝, may change in the case of the DP, between 
the submission time and time ℎ௤, when share 𝑞 of the order is traded, which is taken into account in our 
model. This is because, in the DP, 𝑝 is the midquote of the LM’s best bid and ask prices, 𝑝 = 0.5(𝐴௧ + 𝐵௧); thus, 
the values of 𝐴௧ and 𝐵௧  may change between the time of order submission and the time of the transaction 
involving share 𝑞 of the order. 
17 The asset value used is the value at the transaction time, despite the fact that the trader observes the asset 
value with a lag (i.e., we use 𝑣௛೜  rather than 𝑣௛೜ି୼୲). This is because the trader realizes what the real asset 
value in the transaction is after a lag Δt, and thus also realizes what the real payoff obtained from the 
transaction is, which allows the trader to understand the real impact of her trading decision.  



21 
 

3.8 Model equilibrium and solution 

 In equilibrium, traders behave optimally by taking decisions that maximize their expected 

discounted utility in each state of the economy (as in equation (2)). Thus, trading decisions are 

state-dependent. In addition, an optimal decision in a state 𝑠 is a consequence of previous optimal 

decisions taken in previous states. Thus, the process of optimal decisions is Markovian. Moreover, 

the trading game reflected in the model is a Bayesian game, because traders observe their own 

private values and their own order size requirements, which are unknown to the rest of the traders 

participating in the economy. Therefore, we obtain a Markov-perfect Bayesian equilibrium (see, e.g., 

Maskin and Tirole, 2001). 

As in Doraszelski and Pakes (2007), we consider an equilibrium that is stationary and 

symmetric, where optimal decisions are time-independent. Thus, two identical traders who observe 

the same state, one trader observing it in the present and the other observing it in the future, take 

the same decision. Furthermore, as mentioned before, the set 𝒜(𝑠) of feasible trading alternatives 

is discrete and finite, and each state 𝑠 is defined by variables that are discrete. Hence, the decision 

set is finite and the state space is countable; thus, there is a Markov-perfect Bayesian equilibrium 

(see Rieder, 1979). 

In order to obtain the Markov-perfect Bayesian equilibrium, we use the Pakes and McGuire 

(2001) algorithm due to the extremely large state space. The intuition behind this algorithm is that 

traders learn to take optimal decisions under different market conditions by repeatedly playing the 

trading game. First, initial beliefs are set regarding the expected payoff of each trading decision. 

Traders then play the game and take their optimal decision (the one with the highest expected 

payoff) given the state observed. After each transaction, traders update their beliefs about the 

expected payoffs of their trading decision based on the observed realized payoffs that result from 

their actions.  
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The equilibrium is achieved as soon as there is no longer any learning occurring. This means 

that the equilibrium is reached when (i) the same type of trader takes the same optimal decision 𝑎∗ 

in state 𝑠∗ in the present or in the future and (ii) the expected payoff of optimal decision 𝑎∗ in state 

𝑠∗ for the same type of trader does not change over time. We use the same procedure to determine 

whether the equilibrium has been reached as Goettler et al. (2009). Appendix D describes the 

implementation details of the Pakes and McGuire (2001) algorithm. We fix the beliefs of traders 

when the model equilibrium is obtained, and then simulate 100 million further events. All results 

presented in the following sections regarding the complete model are computed using these last 

100 million events.  

 

3.9 The model parameterization 

The majority of the parameters used in this paper are the same as those of Goettler et al. 

(2009), who present a similar model for a single limit order book. Goettler et al. (2009) report 

evidence that such parameters are consistent with the behavior of the real market, and they are 

also in line with previous empirical findings (e.g., Bandi et al., 2006; Hansen and Lunde, 2006; 

Hollifield et al., 2006; and Aït-Sahalia et al., 2011).  

One might still believe, however, that our findings were driven by the selected parameters, 

which is an important concern for theoretical studies. To deal with this concern, we perform 

robustness checks across parameter combinations (presented below). Additional results from the 

model using alternative sets of parameters are in line with the findings presented here. Moreover, 

we show in Section 4.1 that the intuitions behind the behavior of traders are independent of any 

parameter setup. Thus, we find that any potential new parameter setups only intensify (or weaken) 

the main behaviors of traders. 

Furthermore, similar parameters have been used in other related theoretical studies, with 

dynamic models for a single limit order book (e.g., Chiarella and Ladley, 2016; and Bernales, 2019) 
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and dynamic models with two limit order books (e.g., Bernales et al., 2020). In particular, Bernales 

et al. (2020) analyze the suitability of the use of Goettler et al. (2009)’s parameters by computing 

the trader arrival rate, the fundamental value volatility, and the distribution of private values using 

message-level market data from 2015 for stocks on the London Stock Exchange. They show that 

these estimates are not substantively different from the model parameter choices in Goettler et al. 

(2009). This is because the parameters in Goettler et al. (2009) are presented in relative terms (e.g., 

the parameters concerning time periods are relative to the investors’ arrival rate, while the 

parameters related to asset values are relative to the tick size of the market). Thus, even if financial 

markets have evolved over time, the relative relationships between trader arrival rates, 

fundamental value volatility, and the distribution of private values are stable.  

Consequently, and following Goettler et al. (2009), the average time period between two 

consecutive events of the same type in our study (e.g., the average time period between two 

consecutive changes in the asset value) is defined relative to the average time periods observed for 

other types of events (e.g., the arrival of two consecutive traders). Thus, the Poisson process that 

describes the arrival of traders is parameterized such that new traders arrive, on average, every 

one unit of time (i.e., 𝜆 = 1.0), whilst each trader re-enters on average every four units of time (i.e., 

𝜆௥ = 0.25).18 Traders observe the asset value with a lag of 16 units of time (i.e., Δ = 16). We use 

different values of the parameter that determines changes in the asset value in order to evaluate the 

impact of the asset volatility. Hence, the asset value changes from every 16 units of time to every 

single unit of time (i.e., 𝜆௩ takes values from 0.0625 to 1.0).  

Similarly to in Goettler et al. (2009), profits and trading costs are measure in ticks. The 

value of one tick, 𝑑, is equal to one (i.e., 𝑑 = 1). Private values of traders, 𝛼, are drawn from the 

discrete vector {−8, −4, 0, 4, 8}, with these values also measured in ticks. Like in Goettler et al. 

(2009), the probability that a traded share involves a trader with private value -8 or 8 is 15% in 
                                                 
18 Thus, one unit of time can be one minute (which was appropriate 20 years ago in the real financial 
markets) or one microsecond (which is the speed of trading activity observed now).  
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each case. The probability that a traded share involves a trader with private value -4 or 4 is 20% in 

each case, and the probability that a traded share involves a trader with a private value of 0 is 30%.  

We assume an asymmetric probability of being a large or a small trader across different 

private values, because large traders represent investors with large exogenous reasons to trade 

who want to execute quickly without a large price impact (which is the case for traders with high 

absolute private values). Thus, we assume that a third of the traded shares from traders with 

private values of -4 and 4 are submitted by large traders. We also assume that all traded shares 

from traders with private values of -8 and 8 are submitted by large traders, and that all traded 

shares from traders with a private value of 0 are submitted by small traders. We assume that large 

traders submit orders for 𝑄 = 3 shares.19 Finally, in terms of the remaining model parameters, we 

assume that the number of discrete prices available on each side of the limit order book, N, is equal 

to 31, while the discount rate from delaying a trade, 𝜌, is equal to 0.05 per unit of time. 

In unreported results, as mentioned above, we re-run the model with additional parameter 

setups as a robustness check. Specifically, we multiply the following parameters by 0.8 and 1.2 to 

generate new parameter combinations: the traders' arrival rate, 𝜆; the traders' re-entry rate, 𝜆௥; the 

time lag with which traders observe the asset value, Δ; and the delaying discount rate, 𝜌. We also re-

run the model with a different distribution of agent types. Firstly, we assume a homogeneous 

probability of being a large trader across agents with different private values. Thus, we assume that 

50% of the traded shares from all trader types in terms of their private values (i.e., all traders with 

private values −8, −4, 0, 4, and 8) are submitted by large traders. Secondly, we change the 

distribution of agents’ private values. Thus, we assume that we only have traders with private 

values {-8, 0, 8}. In this scenario, 25% of the traded shares are from traders with a private value of -

8, 25% from traders with a private value of 8, and 50% from traders with a private value of 0. Here 

we assume that half of the traded shares from traders with private values of -8 and 8 are submitted 
                                                 
19 We could include additional shares in the orders of large traders. However, we assume 𝑄 = 3 to make the 
model computationally tractable. 
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by large traders, and all traded shares from traders with a private value of 0 are submitted by small 

traders. The findings observed under all of these additional parameter setups are qualitatively 

similar to the results reported here. 

 

4 Traders’ Behavior 

The introduction of a dark pool (DP) offers additional trading alternatives to agents who 

traditionally trade in a lit market (LM) organized as a limit order book. Thus, traders can trade not 

only through limit and market orders in the lit venue, but also through undisplayed dark orders in 

the dark market. The question that we want to answer in this section is the following: How do 

traders trade optimally when they can submit orders to either the LM or the DP? The answer 

depends on the advantages and disadvantages of the trading alternatives under different market 

conditions. Thus, as a first step, we provide two simple examples to demonstrate the intuitions 

behind the trading decisions of agents, when the DP is running in parallel to the LM. 

 

4.1 Two simple examples 

The purpose of this section is to provide two simple examples, to help explain intuitively 

how agents make trading decisions when they have access to the LM and the DP. In the first 

example, suppose a trader (who is referred to as a speculator, or trader 𝑆), wants to buy one share 

of an asset. The speculator has a positive, but very low, private value of immediately trading the 

asset, 𝛼ௌ. In the second example, there is a different type of trader (called a liquidity trader, or 

trader 𝐿), who also wants to buy one share of the same asset. The liquidity trader has a positive 

private value of trading the asset without delay, 𝛼௅, which is larger than 𝛼ௌ (i.e., 0 ≤ 𝛼ௌ < 𝛼௅).  

The only difference between the two examples is the trader type (i.e., there is either a 

speculator or a liquidity trader). In both examples, the asset value is stochastic and can be traded in 

either the LM or the DP. Suppose, also in both examples, that the asset value is 𝑣 when each trader 
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decides where to buy the asset share (i.e., in the LM or in the DP). The volatility of the asset can take 

three values: low (𝜎∗), medium (𝜎∗∗), or high (𝜎∗∗∗).  

In both examples, the trader can buy the asset share by using either a buy market order 

(henceforth, 𝑀𝑂) or a limit order (henceforth, 𝐿𝑂) in the LM, or through a dark order (henceforth, 

𝐷𝑂) in the DP.20 Each trader optimally chooses one of the three trading alternatives for buying the 

asset, depending on the market conditions.  

Firstly, each trader has the option to submit a market order that is executed immediately at 

price 𝐴. The expected payoff of the market order will be (𝑣 + 𝛼ௌ − 𝐴) for the speculator and 

(𝑣 + 𝛼௅ − 𝐴) for the liquidity trader.21 

Secondly, each trader has the option to submit a buy limit order at price 𝐵 (with 𝐵 < 𝐴), 

which will wait in the limit order book until executed. In this case, the expected payoff is 

𝑒ିఘ௛ಽೀ(𝑣௅ை + 𝛼ௌ − 𝐵) for the speculator and 𝑒ିఘ௛ಽೀ(𝑣௅ை + 𝛼௅ − 𝐵) for the liquidity trader. Here, 𝜌 

is the discount rate that reflects the waiting cost, ℎ௅ை is the expected execution time of the buy limit 

order at price 𝐵, and 𝑣௅ை is the expected value of the asset at time ℎ௅ை, where 𝐵 < 𝑣௅ை . In this 

example, for illustrative purposes, we assume that these values are fixed and the expected value of 

the asset at the time of execution of the limit order is independent of the current value. We will 

relax these assumptions below.  

Thirdly, each trader has the option to submit a buy dark order at price 𝑀, where 𝑀 is the 

midquote of the LM (i.e., 𝑀 = 0.5(𝐴 + 𝐵)). There is a probability 𝜙 (with 0 ≤ 𝜙 ≤ 1) that the dark 

order is not immediately traded because undisplayed orders waiting to be executed in the DP may 

also be buy dark orders. Conversely, with probability (1 −  𝜙), the dark order is traded 

immediately, since there is a chance that there are non-displayed sell dark orders waiting to be 

executed in the DP. Therefore, in the case of dark orders, the expected payoff for the speculator is 

                                                 
20 The situation in which both traders want to sell one share of the asset is analogous. 
21 In these two examples, each agent can also be a large trader rather than a small trader, because the 
intuitions provided for the behaviors of traders do not change regardless of whether we consider small or 
large traders. 
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(1 − 𝜙)[𝑣 + 𝛼ௌ − 𝑀] + 𝜙𝑒ିఘ∙௛ವೀ[𝑣஽ை + 𝛼ௌ − 𝑀], while that for the liquidity provider is 

(1 − 𝜙)[𝑣 + 𝛼௅ − 𝑀] + 𝜙𝑒ିఘ∙௛ವೀ[𝑣஽ை + 𝛼௅ − 𝑀]. Here, ℎ஽ை is the expected execution time of the 

buy dark order in the case where that order is not executed immediately, and 𝑣஽௢ is the expected 

value of the asset at time ℎ஽ை. 

Figure 1 shows the expected payoffs of the traders as functions of the asset value, 𝑣, at the 

time of the order submission decision for the different order types. Panel A (Panel B) reflects the 

expected payoff of the speculator (liquidity trader). The range of potential values of the asset, which 

can be observed under different asset volatility levels, is also depicted in Figure 1. Suppose that the 

asset value was 𝑣଴ the instant before the traders' decision. The asset value, however, is stochastic 

and so the asset value 𝑣 can change from 𝑣଴ in this instant. The potential range of values of 𝑣 

depends on the level of the asset volatility (i.e., 𝜎∗, 𝜎∗∗, or 𝜎∗∗∗).  

We can observe in Figure 1 that, for both trader types, the slope of the payoff line for a 

market order is one, while the slope of the payoff line for a dark order is 1 −  𝜙. The payoff line for a 

limit order is horizontal, since it does not depend on 𝑣.  

[Insert Figure 1 here] 

Figure 1 shows that the optimal decision depends on two main elements: (i) the private 

value of each trader (i.e., 𝛼ௌ and 𝛼௅, for speculators and liquidity traders, respectively) and (ii) the 

value 𝑣 that traders observe when they make their trading decisions. The speculator (liquidity 

trader), who has a private value of 𝛼ௌ (𝛼௅), strictly prefers the buy limit order when 𝑣 < 𝑣ఈೄ
௅௢஽௢ 

(𝑣 < 𝑣ఈಽ
௅௢஽௢). The speculator (liquidity trader) strictly prefers the buy dark order when 𝑣ఈೄ

௅௢஽௢ < 𝑣 <

𝑣ఈೄ
஽௢ெ௢ (𝑣ఈಽ

௅௢஽௢ < 𝑣 < 𝑣ఈಽ
஽௢ெ௢), while the speculator (liquidity trader) strictly prefers buy market 

orders when 𝑣ఈೄ
஽௢ெ௢ < 𝑣 (𝑣ఈಽ

஽௢ெ௢ < 𝑣). In addition, the speculator (liquidity trader) is indifferent 

between the limit order and the dark order when 𝑣 = 𝑣ఈೄ
௅௢஽௢ (𝑣 = 𝑣ఈಽ

௅௢஽௢), and the speculator 
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(liquidity trader) is indifferent between the dark order and the market order when 𝑣 = 𝑣ఈೄ
஽௢ெ௢ 

(𝑣 = 𝑣ఈಽ
஽௢ெ௢). 

It is interesting to see in Figure 1 that the chances of observing a given asset value, and 

therefore the chances of the various order decisions being made by each trader, depend on the 

asset volatility. In the scenario where the asset volatility is low, in Panel A, the speculator more 

often prefers a buy limit order (they behave as liquidity providers) as this means she receives the 

'immediacy' cost paid by future market orders. Dark and market orders are not attractive for 

speculators since they provide lower profits. This is because dark and market orders have worse 

prices and speculators do not have large exogenous reasons (i.e., a large private value) for trading 

immediately. Conversely, Panel B shows that, when the asset volatility is low, the liquidity trader 

more often prefers buy market orders (they behave as liquidity takers) due to her private reasons 

for trading as soon as possible. The liquidity trader does not prefer limit or dark orders since they 

have associated waiting costs.  

 In the scenario with a medium level of asset volatility, depicted in Figure 1, both the 

speculator and the liquidity trader begin to prefer buy dark orders more often. In this scenario, the 

speculator starts to prefer dark orders regularly when 𝑣 reaches values above 𝑣ఈೄ
௅௢஽௢, due to the 

increase in the asset volatility (see Panel A). The speculator starts to use dark orders, because she 

can make a profit by picking off a potential sell dark order waiting in the DP if 𝑣 is larger than 𝑣ఈೄ
௅௢஽௢. 

However, there is a probability 𝜙 that the dark orders waiting in the DP are buy dark orders. Thus, 

with probability 𝜙, the speculator may not be able to carry out her picking-off strategy, and will 

wait in the execution queue of the DP. In this scenario, with a medium asset volatility, the 

speculator cannot often perform a similar picking-off strategy through market orders, since the 

asset volatility is not high enough to place sell limit orders in the wrong position in relation to the 

asset value (i.e., it is rare to observe 𝑣 larger than 𝑣ఈೄ
஽௢ெ௢).  
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 Turning to the liquidity trader, as shown in Panel B of Figure 1, in the scenario with a 

medium level of asset volatility, she also starts to select buy dark orders regularly. This is because 

the asset value can decrease and take values below 𝑣ఈಽ
஽௢ெ௢, making her expected payoff from the 

market order lower than that from the dark order. This is because the large price 𝐴 that would be 

paid for the market order (to buy the asset immediately) is not attractive enough to the liquidity 

trader when the asset value decreases below 𝑣ఈಽ
஽௢ெ௢. However, given that the buy dark order has a 

better price than the buy market order (i.e., 𝑀 is lower than 𝐴), the dark order becomes more 

valuable than the market order if the dark order is executed immediately (which happens with 

probability 1 − 𝜙). There is, though, a chance that the dark order is not executed (with probability 

𝜙), but this is compensated for by the better price conditions of the dark order. Furthermore, in this 

scenario, the liquidity trader still does not prefer the buy limit order since the asset volatility is not 

high enough for very low levels of 𝑣, which would generate lower expected payoffs from both the 

dark and market orders than from the limit order, to be observed.  

 In the third scenario, with a high level of asset volatility, the speculator prefers market 

orders more often. This is because the speculator can obtain large payoffs by searching for 

unexecuted limit orders, which can be picked off when the asset value is larger than 𝑣ఈೄ
஽௢ெ௢ due to 

the high asset volatility (see Figure 1 Panel A). A picking-off strategy is executed with surety with a 

market order, which is different to the potential picking-off strategy in the DP, as explained above. 

 Liquidity traders, when the asset volatility is high, begin to employ more buy limit orders. 

This is because there is a chance that the asset value will decrease below 𝑣ఈಽ
௅௢஽௢, which makes the 

expected payoff to the liquidity trader lower from both the buy dark order and the buy market 

order than from the buy limit order. Moreover, the use of the limit order is even more attractive due 

to the high likelihood of there being several speculators waiting in the LM to submit market orders, 

who will pick off limit orders in unfavorable positions (as previously described). Thus, any limit 
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orders from liquidity traders should be traded relatively quickly because of their high exposure to 

the picking-off risk when the asset volatility is high. 

 Figure 1, therefore, shows that the trading activity in the DP should be higher when the 

asset volatility has an intermediate level. This is because, in this scenario, both speculators and 

liquidity traders will more often select dark orders. Of course, the two simple examples described in 

this section are special cases, with the purpose of explaining the intuitions behind the complete 

model described in Section 3. Thus, these two examples do not consider several endogenous 

interactions between the state variables, which will be affected by the level of the asset volatility. 

For instance, in this example, bid and ask prices are exogenous, expected execution times of limit 

and dark orders are constant, and the probability of the immediate execution of dark orders is 

static. However, the traders’ behavior in the complete model (presented in Section 3) does consider 

such endogenous interactions. 

 

4.2 Preferences of traders for limit, market, and dark orders  

 In this section, we present the traders' behavior under the full model, described in Section 3, 

for three market setups. Firstly, we report the results for the lit market (LM) without the dark pool 

(DP). This first market setup is called 'only LM' and represents the main benchmark model in our 

study. Secondly, we report the results for a model setup that considers both the LM and the DP, 

with a time execution priority for dark orders, which is called 'LM + DP(time priority)'. Thirdly, we 

show the results for a model setup in which there is again both the LM and the DP, but in this case 

dark orders follow a size execution priority. This third model setup is called 'LM + DP(size 

priority)'.22 

                                                 
22 Table B1 in Appendix B presents a summary of the main results of our study, in which we show the impacts 
on trading activity, liquidity, and welfare, of changes in the execution priority rules in the DP, adverse 
selection, and traders' competition. 
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 Figure 2 shows the percentage of executions of each order type under the three model 

setups described above, as a function of the asset volatility. We proxy the asset volatility by the rate 

of change of the asset value, 𝜆௩, given that the asset value follows a Poisson process.23 As a first step 

in this section, we present the order execution preferences for two types of traders, shown in 

Figure 2: speculators who are traders with zero private value from trading immediately (see Panels 

A-C); and liquidity traders with absolute private value equal to 8, who want to trade as soon as 

possible (see Panels D-F).  

[Insert Figure 2 here] 

Observation 1. (i) Speculators and liquidity traders change their order preferences with the 

asset volatility under the three model setups.  

(ii) Both speculators and liquidity traders use dark orders more often when there is a medium 

level of asset volatility.  

 Figure 2 shows that the asset volatility affects the order preferences of traders, and thus 

their decisions regarding whether to use the LM or the DP, which is consistent with the intuitions 

about the traders' behavior that were explained in Section 4.1. Let us first analyze the order 

preferences of traders in a scenario where the asset volatility is low (i.e., when 𝜆௩ is small). Panels 

A-C show that speculators more often prefer to compete in the market by trading through limit 

orders (they behave as liquidity providers), whereas Panels D-F show that liquidity traders more 

often prefer market orders (they behave as liquidity takers) when the asset volatility is low. 

Liquidity traders want to trade quickly, and hence are willing to pay the immediacy cost through 

market orders to obtain their private value as soon as possible. Thus, when the asset volatility is 

low, speculators receive through limit orders the immediacy costs paid on the market orders 

submitted by liquidity traders. 

                                                 
23 The variance of a Poisson distribution with parameter 𝜆 is equal to 𝜆. 
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 When the asset volatility increases, traders change their order preferences. In the case of 

the model setups involving both the lit and dark markets, we observe that speculators and liquidity 

traders begin to prefer dark orders when the asset volatility increases to a medium level (see 

Panels B-C and E-F in Figure 2). Consistent with our arguments presented in Section 4.1, 

speculators begin to make profits through a picking-off strategy in the DP when the asset volatility 

is at the medium level, as it increases the chances of the asset value moving against waiting dark 

orders submitted previously. A picking-off strategy is possible since traders have cognitive limits; 

hence, traders cannot modify unexecuted dark orders instantaneously when there are changes in 

the asset value. In fact, we show in Appendix C (see Figure C1) that speculators more often prefer to 

use the DP to execute their picking-off strategies through dark orders when there is a medium level 

of asset volatility. 

 Liquidity traders also prefer dark orders under a medium level of volatility because the 

asset can often take values that make market orders less attractive than dark orders, since the latter 

provide better conditions in terms of the execution price. Therefore, if the asset value falls (rises) 

far enough below (above) the current ask (bid) price of market orders, the liquidity trader might be 

willing to select the better price offered in the dark market (even if dark orders imply potential 

waiting costs if not immediately executed). 

 In the scenario with high asset volatility and both the LM and the DP, we observe that 

speculators begin increasingly to prefer market orders (see Panels B and C).24 This is because 

speculators make higher profits by searching for unexecuted limit orders in the LM that are highly 

exposed to picking-off risk, when the asset changes against them due to the high levels of asset 

volatility. This is consistent with Figure C1 Panel C in Appendix C, which shows that speculators 

begin to more regularly prefer to use market orders in the LM to perform their picking-off 

strategies when the asset volatility is high.  
                                                 
24 In the case of the benchmark model setup without the DP (only LM), speculators also begin to prefer 
market orders to limit orders when the asset volatility increases (see Figure 2 Panel A).  
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 Liquidity traders, meanwhile, begin to use limit orders more often when the asset volatility 

is high (see Panels E and F).25 This is because there is a chance of the asset value moving against the 

prices of dark orders and market orders, which can be compensated by the better prices offered by 

limit orders. Moreover, under this volatility scenario, the use of limit orders is helped by the fact 

that there will be several speculators waiting in the LM to submit market orders, which will 

promptly pick off any limit orders submitted by the liquidity traders (i.e., the liquidity traders can 

execute their limit orders quickly). This is an important point, with liquidity traders paying a 

waiting cost and a picking-off cost on limit orders so as to obtain liquidity when the asset volatility 

is high, instead of paying the bid-ask spread on market orders.26 

 Now understanding the trading behaviors of speculators and liquidity traders, as described 

in Figure 2, we present in Figure 3 the market shares of the LM and the DP as functions of the asset 

volatility. Panels A-C show the market shares for each trader type in terms of their private values 

(Panels A-C), for traders with small and large orders (Panels D-E), and for all traders (Panel F).  

[Insert Figure 3 here] 

Observation 2. (i) The migration of the trading activity from the lit market to the dark pool 

has a humped shape as a function of the asset volatility, independent of the trader type and 

independent of the execution priority rule used in the dark pool. 

(ii) The dark trading activity is higher when the dark pool has a size execution priority than 

when it has a time execution priority, especially in the case of moderate asset volatility. 

(iii) Large traders prefer the lit market to the dark pool to a greater extent when the level of 

asset volatility is low or high, even if the dark pool reduces the waiting costs for large orders in 

the case that dark orders are executed according to a size execution priority, and even if the 

dark pool reduces the price impact of large orders.  
                                                 
25 Liquidity traders also begin to prefer limit orders in the benchmark model setup without the DP (only LM) 
when the asset volatility goes up (see Figure 2 Panel D).  
26 Interestingly, we also show in Appendix C (Figure C1) that the size execution priority rule reduces the 
picking-off risk of the whole lit-dark system relative to the case of a time execution priority for dark orders. 
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 Figure 3 shows that the trading activity in the DP has a humped shape as a function of the 

asset volatility, with a maximum value when the asset volatility has a medium level, for each agent 

type and for the whole market. Most importantly, the trading activity in the DP is higher when dark 

orders follow the size execution priority rule than when they follow the time execution priority 

rule, especially when volatility is at an intermediate level. This is because, as expected, the dark 

trading activity of traders with large orders is much higher when dark orders follow a size 

execution priority than when they follow a time execution priority, with a much more pronounced 

migration to the dark pool at a medium level of volatility. The higher trading activity of large 

traders in the dark market augments trader competition there and, as consequence, the execution 

probability of dark orders increases, which even attracts other trader types to the dark market.  

 It is interesting to observe in Panel E that, conditional on there being a DP running together 

with the LM, large traders prefer the LM to the DP to a greater extent when the level of asset 

volatility is low or high, independent of the execution priority rule for dark orders. This is because, 

when the level of asset volatility is low or high, the total trading activity is lower in the DP than in 

the LM, which increases the potential waiting costs for dark orders. Thus, despite the fact that the 

DP reduces the price impact of large orders, the waiting costs are high in the DP for large traders 

when the level of asset volatility is low or high. For instance, in the model setup 'LM + DP(size 

priority)', the waiting costs paid by traders in the DP are 38.3% and 13.4% larger than those in the 

LM when 𝜆௩ is 0.06 and 1.00, which represent low and high levels of volatility, respectively. At the 

same time, in the same model setup, the waiting costs paid by traders in the DP are 9.5% lower than 

those in the LM when 𝜆௩ is 0.25, which is an intermediate level of volatility (a similar result is 

obtained in the model setup 'LM + DP(time priority)’).  
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5 Empirical Implications of Dark Pools, for Market Liquidity 

 In this section, we analyze the effect of the introduction of a dark pool (DP), which runs in 

parallel to the lit market (LM), on market liquidity. Our first measure of market liquidity in the DP 

and the LM is their relative levels of trading activity, which were reported earlier as the market 

share of each venue (see Figure 3 in Section 4.2). However, the relative trading activity in each 

market does not necessarily reflect potential liquidity costs (e.g., immediacy costs, waiting costs, 

and/or picking-off costs) that may affect the trading process. In this sense, the bid-ask spread is 

frequently used as a proxy for liquidity in lit markets, since it reflects such liquidity costs. Thus, our 

second liquidity measure is the bid-ask spread in the limit order market.  

 The bid-ask spread, however, does not exist in the DP, where transactions happen at the 

midquote of the LM. Thus, to analyze the market liquidity of the whole lit-dark system, we need a 

measure of liquidity (similar to the bid-ask spread) not only for the lit venue, but also for the DP 

and the complete system. Consequently, we create a third liquidity measure that can be used in all 

market combinations we consider.  

 This third liquidity measure should capture the liquidity cost paid by traders in their order 

submission. Thus, our liquidity measure simultaneously includes immediacy costs, waiting costs, 

and picking-off costs (captured by the bid-ask spread), since all affect the value obtained by traders 

in executing. Suppose that a trader arrives in the economy at time 𝑡଴, and has private value 𝛼. The 

trader submits an order for one share to either of the markets (i.e., the LM or the DP); thus, she can 

submit a limit order, a market order, or a dark order. The submission price of the order is 𝑝଴, and 

the order has direction 𝑥଴ (𝑥଴ = 1 for a buy order and 𝑥଴ = −1 for a sell order). Suppose that the 

order is executed at time 𝑡ଵ. Then, the trader’s realized payoff (i.e., not the expected payoff), 𝜋, is 

given by 

𝜋 = 𝑥଴൫𝛼 + 𝑣௧భ −  𝑝଴൯𝑒ିఘ(௧భି௧బ), (3)



36 
 

where 𝑣௧భ is the asset value at time 𝑡ଵ. It is important to notice that the realized payoff, 𝜋, in 

equation (3) includes potential waiting costs, since there is a chance that 𝑡ଵ ≠ 𝑡଴ in the case of limit 

orders and dark orders. In addition, 𝜋 includes immediacy costs and picking-off costs, given that, in 

general, 𝑝଴ ≠ 𝑣௧భ .27 

 Consider now a scenario of a lit-dark system with infinite liquidity, such that there are no 

liquidity costs (i.e., there are no immediacy costs, waiting costs, or picking-off costs). In this 

scenario with infinite liquidity, all orders are executed immediately since there are no waiting costs, 

so 𝑡ଵ = 𝑡଴ in equation (3). In addition, under infinite liquidity, 𝑝଴ = 𝑣௧భ = 𝑣௧బ , given that there are 

no immediacy costs or picking-off costs. Thus, in this scenario without liquidity costs, the trader’s 

realized payoff, 𝜋ே௢௅௜௤஼௢௦௧௦, is 

𝜋ே௢௅௜௤஼௢௦௧௦ = 𝑥଴𝛼. (4)

 Then, the liquidity costs can easily be obtained by taking the realized payoff without 

liquidity costs, 𝜋ே௢௅௜௤஼௢௦௧௦, minus the realized payoff with liquidity costs, 𝜋, which is equal to 

𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑐𝑜𝑠𝑡𝑠 = 𝑥଴𝛼 − 𝜋. (5)

 Figure 4 Panel A shows the bid-ask spread as a function of the asset volatility in the LM 

(Panel A). In addition, we present the liquidity costs as a function of the asset volatility in the LM 

(Panel B), in the DP (Panel C), and in the whole system (Panel D).  

[Insert Figure 4 here] 

Observation 3. (i) The liquidity costs (in the lit market, the dark pool, and the whole system) 

are positively related to the asset volatility.  

(ii) The liquidity costs of the whole system are larger when the dark pool is introduced than 

when there is only a lit market.  

                                                 
27 In the explanation of our liquidity measure for the DP and the complete system, we treat all traders as the 
same size. The agent, however, can be a trader with a large order; in this case, we consider the average payoff 
per share of her order. 
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(iii) The size execution priority rule improves the liquidity of the whole lit-dark system relative 

to the case of a time execution priority for dark orders. 

 In Figure 4, Panels A and B show that the bid-ask spread and the liquidity costs in the LM 

are larger when the DP is introduced. This is because there is a migration of trading activity from 

the LM to the DP, as described in Figure 3. This finding is important yet differs from previous 

theoretical studies, which have shown diverse effects (negative or positive) of dark trading activity 

on the LM liquidity, depending on whether the migration is due to specific types of traders assumed 

to submit limit orders or those assumed to submit market orders in the LM. For instance, Zhu 

(2014) and Buti et al. (2017) show that market liquidity is reduced in the LM after the introduction 

of a DP, while Brolley (2019) finds the opposite result.  

 As explained in Section 4, in our model, any trader type can decide to submit limit or market 

orders, with traders’ decisions depending on the asset volatility. Therefore, any type of migration to 

the DP induces damage to the liquidity of the LM, since order migrations always involve liquidity 

providers and liquidity takers.  

In addition, this figure shows that the bid-ask spread (Panel A) and liquidity costs in each 

market and in the whole system (Panels B-D) increase with the asset volatility. This is mainly due to 

the picking-off risk that increases when the asset volatility goes up.  

 Interestingly, Figure 4 Panel D shows that the liquidity costs of the whole system are larger 

when the DP is introduced than when there is just the LM. This result is consistent with Pagano 

(1989), who shows that there are negative externalities of market fragmentation in the presence of 

market frictions. 

 Figure 4 also reports that the bid-ask spread and the liquidity costs in the LM are larger 

(Panels A and B), and the liquidity costs in the DP are lower (Panel C), when the DP has a size 

execution priority, compared to when it has a time execution priority. This is consistent with Figure 

3, showing that there is a larger migration of trading activity from the LM to the DP (mainly of 
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traders with large orders, as expected) under a size execution priority than under a time execution 

priority for dark orders.  

 Most importantly, in terms of policy implications, Panel D shows that the liquidity costs of 

the whole system are lower when the DP has a size execution priority than when it has a time 

execution priority. This result mainly comes from the reduction in the waiting time for large traders 

who submit orders to the DP.  

 The findings regarding liquidity, from Figure 4, together with the market preferences of 

traders from Figure 3 (Panel F), provide the following implication: the trading activity of the DP is 

hump-shaped as a function of the bid-ask spread in the LM and as a function of liquidity costs in the 

whole system, which is reported in Figure 5. In this figure, Panel A (Panel B) shows the market 

share of the DP as a function of the bid-ask spread (liquidity costs in the whole system).  

[Insert Figure 5 here] 

Observation 4. (i) The trading activity in the dark pool has a hump shape as a function of 

both the bid-ask spread in the lit market and as a function of the liquidity costs of the whole 

system. 

(ii) Thus, the trading activity in the dark pool can be both positively and negativity related to 

the level of liquidity.  

 The finding presented in Figure 5 is due to the fact that, on the one hand, there is a positive 

association between the bid-ask spread in the LM (see Figure 4 Panel A) – or the liquidity costs in 

the whole system (see Figure 4 Panel D) – and the asset volatility. On the other hand, there is a 

hump-shaped relationship between the DP activity and the asset volatility (see Figure 3 Panel F).28 

This result is consistent with Ray (2010), who shows that the dark trading activity has a hump-

shaped relationship with the bid-ask spread, using data from three different DPs (POSIT, Liquidnet, 

and Pipeline Trading). 
                                                 
28 In unreported results, we also find that the trading activity of the DP is hump-shaped as a function of the 
liquidity costs in the LM and as a function of the liquidity costs in the DP.  
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 Furthermore, the results presented in Figure 5 suggest that empirical studies that use linear 

regressions may fail to capture the non-linear relationship between dark trading activity and 

liquidity measures. In addition, the results presented in Figure 5 may explain the mixed empirical 

results on the association between the level of trading activity in the DP and market liquidity (see, 

e.g., Ray, 2010; Degryse et al., 2015; Kwan et al., 2015; Buti et al., 2016; Foley and Putniņš, 2016; 

Gresse, 2017; Hatheway et al., 2017; and Farley et al., 2018).  

 

6 Traders' Payoffs and Market Welfare  

 In equilibrium, agents make decisions with the objective of maximizing their expected 

payoffs (i.e., by solving equation (2)). Let 𝐺௭(𝜆𝑣) be the expected payoff per traded share of trader 

type 𝑧 (where the trader type refers to whether she is a small or large trader, and her private 

value), as a function of the asset volatility, 𝜆௩.29,30 Similarly to Biais et al. (2015), we set utilitarian 

welfare equal to: 

𝑈(𝜆௩) = ෍ 𝜔௭
௭∈௓

𝐺௭(𝜆௩), (6)

where 𝜔௭ is the proportion of trader type 𝑧 in the market. Figure 6 Panel A presents the 

welfare of the complete system as a function of the asset volatility, under different model setups. 

Panel B reports the contributions that the LM and the DP make to welfare. For instance, for a given 

level of asset volatility, in the case of the model setup with the LM and the DP (with dark orders 

executed according to size priority), the sum of the black and grey dashed lines in Panel B is equal 

to the value of the dashed black line in Panel A. 

[Insert Figure 6 here] 

                                                 
29 The value of 𝐺௭(𝜆௩) for a large trader is her total expected payoff divided by her number of shares to be 
traded, 𝑄. 
30 It is important to highlight that the expected payoff per traded share of trader type 𝑘 already includes the 
discounted private value of the trader, but also includes the benefits of the transaction per se (i.e., 
𝑒ିఘ௛೜[(𝛼 + 𝑣௛೜ − 𝑝)𝑥] in equation (1)). 
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Observation 5. (i) There is a negative relationship between the welfare of the system and the 

asset volatility, independent of whether the dark pool is introduced.  

(ii) The welfare of the system is lower when the dark pool is introduced than when there is 

only a lit market, independent of the level of asset volatility and the execution priority rule in 

the dark market.  

(iii) The size execution priority rule improves the welfare of the whole lit-dark system relative 

to the case of time execution priority for dark orders. 

  Figure 6 Panel A shows that the welfare of the system decreases as the asset volatility 

grows, for all model setups. In particular, welfare is reduced in a lit-dark market environment 

compared to when there is just the LM, consistent with market fragmentation diminishing welfare 

in the presence of market frictions.  

 Most importantly, Panel A also shows that the size execution priority in the DP improves the 

welfare in the system, because it naturally improves the execution process for traders with large 

orders in the DP. Furthermore, the contributions from the LM and the DP to the welfare in Panel B 

are in line with the market preferences of traders described in Figure 3 of Section 4. 

 We further examine welfare for different trader types. Figure 7 reports a similar analysis to 

the one presented in Figure 6, but conditional on the trader type in terms of their private values.  

[Insert Figure 7 here] 

Observation 6. (i) Traders with |𝛼| = 0 (i.e., speculators) are better off in terms of their 

welfare when a dark pool is introduced. Moreover, there is a positive relationship between the 

speculators' welfare and the asset volatility. 

(ii) Traders with |𝛼| ≠ 0 (i.e., liquidity traders) are worse off in terms of their welfare when a 

dark pool is introduced. In addition, there is a negative relationship between the welfare of 

liquidity traders and the asset volatility.  
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 Figure 7 Panel A shows that agents with |𝛼| = 0 (i.e., speculators) are better off when the 

asset volatility increases. This is due to speculators being able to perform a picking-off strategy 

more frequently when the asset volatility is higher, which offers speculators higher profits than a 

pure liquidity provision strategy through limit orders (see the explanations provided in Figure 1). 

 Interestingly, Panel A shows that traders with |𝛼| = 0 have higher profits when the DP is 

introduced than when there is only the LM, regardless of the asset volatility and of the execution 

priority used in the DP. This is consistent with Figure C1 Panel B in Appendix C, which reports that 

traders with |𝛼| = 0 performed a picking-off strategy more often when the DP was introduced than 

when there was only the LM. As dark orders offer an additional alternative for carrying out a 

picking-off strategy, with prices that are more exposed to such risk, there is a higher picking-off risk 

when there is a DP in the system (see Figure C1 Panel A in Appendix C).  

 Conversely, Panels C and E show that agents with |𝛼| ≠ 0 (i.e., with exogenous reasons to 

trade) receive lower profits when the asset volatility increases. Moreover, agents with |𝛼| ≠ 0 have 

lower profits when the DP is introduced into the market. Such traders have to pay higher liquidity 

costs when the asset volatility increases (see Figure 4). In addition, the extra profits obtained by 

agents with |𝛼| = 0 when the DP is introduced are provided by agents with exogenous reasons to 

trade, with |𝛼| ≠ 0.  

 Furthermore, Figure 7 shows that a size execution priority rule in the DP reduces 

(improves) the expected payoffs of traders with |𝛼| = 0 (traders with |𝛼| ≠ 0) relative to their 

payoffs under a time execution priority rule for dark orders.  

Finally, in Figure 8, we analyze the welfare of traders with different order sizes.  

[Insert Figure 8 here] 

Observation 7. (i) The welfare of traders with small and large orders is negatively related to 

the asset volatility.  
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(ii) The welfare of traders with large orders is lower when a dark pool is introduced than 

when there is a lit market alone, despite the benefits that the dark pool provides to large 

traders in terms of both reductions in the waiting costs when dark orders have a size execution 

priority and a decrease in the price impact of large orders. 

(iii) The contribution of the dark pool to the welfare of traders with large orders is lower than 

that of the lit market, in the case of either low or high asset volatility. 

 Figure 8 shows that welfare decreases for traders with small and large orders when asset 

volatility goes up (Panels A and C, respectively). The figure also reveals two important findings. 

Firstly, Panel C shows that the welfare of traders with large orders is always lower when the DP is 

introduced than when there is the LM alone, regardless of both the asset volatility and the 

execution priority rule. The higher liquidity costs that fragmentation induces in the system lead to a 

detrimental effect on welfare for traders with large orders. This result goes in opposition to the 

traditional vision of the benefits of DPs for large traders, according to which it is thought that a dark 

market reduces the price impact of large orders as dark orders are anonymous and undisplayed.  

 Conditional on the DP being introduced (see Panel D), the contribution of the DP to the 

welfare of traders with large orders is larger than that of the LM when there is a medium level of 

asset volatility. However, the contribution of the DP to the welfare of large traders is lower than 

that of the LM when the asset volatility is low or high. This is consistent with the results regarding 

the preferences of large traders reported in Section 4 (see Figure 3 Panel E), where we explained 

that, when the asset volatility was low or high, the total trading activity was lower in the DP than in 

the LM, which increased the liquidity costs in the dark market.  

 

7 Conclusions  

 In this paper, we analyze the impact of the introduction of a dark pool when there is a limit 

order market running in parallel. We present a model that describes a multi-market environment 
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with an asset that can be traded in either a limit order market (through limit and market orders) or 

a dark pool (through dark orders). Differently to previous theoretical studies, we simultaneously 

include different execution priority rules for dark orders, adverse selection (i.e., picking-off risk), 

and traders' competition in order submission for all types of orders and all types of traders (where 

trader competition changes depending on the migration of trading activity between the lit market 

and the dark pool).  

 We show that the migration of trading activity from the lit market to the dark pool has a 

humped shape as a function of the asset volatility, with a maximum value of dark trading activity 

when the asset volatility has an intermediate level. As expected, the dark trading activity of traders 

with large orders is higher when the dark pool has a size execution priority than when it has a time 

execution priority. The liquidity costs of the whole system are larger when the dark pool is 

introduced than when there is a lit market alone. In addition, the liquidity costs (in the lit market, in 

the dark pool, and in the whole system) are positively related to the asset volatility. Moreover, the 

migration of trades to the dark pool also has a humped shape as a function of the liquidity costs in 

the whole system. This last result is particularly relevant because it may explain the mixed findings 

in the empirical literature about the relationship between the level of trading activity in the dark 

pool and market liquidity. 

 The welfare of the system is lower when the dark pool has been introduced than when there 

is a lit market alone, regardless of the level of asset volatility and the execution priority rule in the 

dark market. The introduction of a dark pool increases welfare only for speculators, while other 

traders are worse off. Interestingly, we show that large traders are worse off when there is a dark 

pool and a lit market, compared to when there is only a lit market, even when there is a size 

execution priority in the dark pool. This is due to the higher liquidity costs that fragmentation 

induces in the system, which strongly affect traders with large orders who want to trade those large 

orders as soon as possible. This result goes against the traditional view of the benefits of dark pools 
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for large traders, in the sense that dark orders should reduce the price impact of large orders, since 

orders in the dark pool are anonymous and undisplayed. 

 Most importantly, in terms of policy implications, we show that the size execution priority 

rule improves liquidity and welfare, and reduces the picking-off risk, of the whole lit-dark system 

relative to the case of a time execution priority for dark orders. Moreover, the size execution 

priority generates a larger migration to the dark pool in the case of moderate asset volatility. 

Therefore, a size execution priority rule induces more benefits in the whole system when there is a 

larger migration to the dark pool with an intermediate level of volatility. 

Whilst the intuitions behind the model are simple, they give rise to additional questions that 

we would like to answer in future research, for example, examining the impact of a dark pool under 

additional execution priority rules, analyzing a dark pool when there are high-frequency trading 

firms, and examining dark pools that do not function during the same working hours as lit markets. 

These questions have been left for future studies. 

 

 

Appendix A: Variable definitions 

In this appendix, Table A1 describes all the variables used in our study.  

[Insert Table A1 here] 

 

Appendix B: Summary of the main results 

In this appendix, we present in Table B1 a summary of the main results of our study, 

comparing the impacts on trading activity, liquidity, and welfare of changes in the execution 

priority rules in the dark pool, adverse selection, and traders' competition. 

 [Insert Table B1 here] 
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Appendix C: Picking-off risk and percentage of orders from speculators that follow a picking-

off strategy as a function of the asset volatility 

 In this appendix, we show the picking-off risk and percentage of orders from speculators 

that follow a picking-off strategy as a function of the asset volatility. Figure C1 Panel A reports the 

picking-off risk as a function of the asset volatility, where the picking-off risk reflects the ratio of the 

submitted waiting orders (i.e., waiting orders in the dark pool and the lit market) that are picked 

off, to the total number of submitted waiting orders. Panel B shows the proportion of executed 

orders in the whole system from speculators (i.e., traders with private value equal to zero) that 

were used to pick off waiting orders that had previously been submitted by other traders. Thus, 

Panel B reports the proportion of executed orders from speculators that are part of a picking-off 

strategy in the whole financial system (i.e., in the LM and DP). In addition, Panel C shows the 

proportion of executed orders from speculators in each market that were submitted as part of a 

picking-off strategy (see Panel C). 

[Insert Figure C1 here] 

 Figure C1 supports the results of Section 4.2, by showing that speculators begin to prefer 

dark orders more often as the asset volatility increases to the medium level. As expected, Panel A 

shows that the picking-off risk increases as the asset volatility increases. In addition, this figure 

reports three important results. Firstly, Panel A shows that there is a higher picking-off risk when 

the dark pool is introduced than when there is only the lit market, which is in line with the 

intuitions explained in Figure 1. This is because dark orders offer better prices than market orders, 

which means that dark orders waiting in the dark pool are more exposed to being picked off than 

market orders when the asset value changes. Secondly, the size execution priority rule reduces the 

picking-off risk of the whole lit-dark system relative to the case of a time execution priority for dark 

orders. Thirdly, the preferences of speculators for picking-off strategies (see Figure C1 Panel B) are 
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greater when the dark pool is introduced (i.e., the black dashed line and the black solid line are 

above the grey solid line).  

 Figure C1 Panel B also shows that the preference of speculators for a picking-off strategy 

increases with the asset volatility. Moreover, when there is a medium level of asset volatility, Panel 

C shows that speculators more often prefer to use the dark pool to perform their picking-off 

strategies through dark orders, than market orders in the lit market. Thus, the results of Figure C1 

are consistent with the arguments of Section 4.1 and the results reported in Figure 2 of Section 

4.2.31 

 

Appendix D: Pakes and McGuire algorithm 

 As we explain in Section 3.8, the intuition behind the Pakes and McGuire (2001) algorithm 

in our model is that traders learn to take optimal decisions under different market conditions by 

repeatedly playing the trading game described in Section 3. At the beginning of the algorithm, initial 

beliefs are set regarding the expected payoff of all trading decisions in each state. Traders then play 

the game and take their optimal decision (the one with the highest expected payoff) given the state 

observed. After each transaction, traders update their beliefs about the expected payoffs of their 

trading decision based on the observed realized payoffs that result from their actions. 

 Initial beliefs: Suppose that 𝑊(𝑎|𝑠) is the expected payoff at time 𝑡 that is associated with 

action 𝑎 ∈ 𝒜(𝑠) that a trader can take when she faces state 𝑠. We set the initial belief about the 

expected payoff, 𝑊(𝑎|𝑠), as follows. Suppose one of the possible actions for a trader with private 

value 𝛼 in state 𝑠 is to submit a limit order at price �̂� for her remaining 𝑄∗ shares, when the 

fundamental value is 𝑣ො. We assume that the initial expected payoff of this action is (𝛼 + 𝑣ො − �̂�)𝑥𝑄∗ 

                                                 
31 It is interesting to observe in Figure C1 Panel B that, when the asset volatility is small, speculators still 
perform picking-off strategies (i.e., around 30% on the left-hand side of the plot in Panel B). This is because, 
despite the low level of asset volatility, some liquidity traders will still submit very aggressive limit orders 
which may even be in the 'wrong position' in relation to the asset value. These limit orders are like market 
orders, since they are executed very quickly due to being in the wrong position (i.e., they are exposed to being 
picked off), and they still have better prices than market orders.  
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discounted by 𝜌 until the expected time 𝑡ே that a new trader arrives in the market, and where 𝑥 = 1 

if the order is a buy order and 𝑥 = −1 if it is a sell order; thus, 𝑊(𝑎|𝑠) =  𝑒ିఘ௧ಿ(𝛼 + 𝑣ො − �̂�)𝑥𝑄∗. This 

value is only a first approximation since the next trader may not trade with the first agent. In the 

case of a market order, the expected payoff for a trader with 𝑄∗ shares remaining is simply 

𝑊(𝑎|𝑠) =  (𝛼 + 𝑣ො − �̂�)𝑥𝑄∗, without any discount. In the case of a dark order with 𝑄∗ shares, the 

initial expected payoff is the average of the expected payoffs of the limit and market orders. Thus, 

the initial expected payoff for a dark order is 𝑊(𝑎|𝑠) =  0.5𝑒ିఘ௧ಿ൫𝛼 + 𝑣ො − 𝑀෡൯𝑥𝑄∗ + 0.5(𝛼 + 𝑣ො −

𝑀෡)𝑥𝑄∗, where 𝑀෡  is the midquote of the lit market.  

 The updating process used to reach equilibrium: Suppose that the trader decides at time 𝑡 to 

take the optimal action 𝑎∘ that provides the maximum expected payoff out of all possible actions. As 

a first case, suppose that the optimal decision 𝑎∘ is a market order in which all remaining shares, 𝑄∗, 

are immediately executed. Then, the updating process of the expected payoff of the optimal action 

𝑎∘ in this case can be expressed as: 

 𝑊(𝑎∘|𝑠) =
𝑛௔∘,௦

𝑛௔∘,௦ + 1
𝑊(𝑎∘|𝑠) +

1
𝑛௔∘,௦ + 1

෍൫𝛼 + 𝑣௧ − 𝑝௤൯𝑥
ொ∗

௤ୀଵ

, (D1)

where 𝑛௔∘,௦ is a counter that increases by one when action 𝑎∘ is taken in state 𝑠.32 

 As a second case, suppose that the optimal decision 𝑎∘ at time 𝑡 is a limit order in the lit 

market, for 𝑄∗ shares. Later, at time 𝑡௥ the same trader re-enters the market and observes that her 

order has not been executed, but the market conditions have changed. The trader observes a new 

state 𝑠௧ೝ in which she follows the optimal strategy 𝑎∘∘ that gives a maximum payoff under the new 

market conditions. Consequently, the original decision 𝑎∘ induces a realized continuation of optimal 

actions and expected payoffs, and thus the updating process of beliefs can be written as: 

                                                 
32 The value of 𝑛௔∘,௦ affects how quickly we reach the model equilibrium (a large value of 𝑛௔∘,௦ is associated 
with a slow convergence). Therefore, we reset 𝑛௔∘,௦ intermittently to improve the convergence speed. 
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 𝑊(𝑎∘|𝑠) =
𝑛௔∘,௦

𝑛௔∘,௦ + 1
𝑊(𝑎∘|𝑠) +

1
𝑛௔∘,௦ + 1

𝑒ିఘ(௧ೝି௧)𝑊൫𝑎∘∘ห𝑠௧ೝ൯. (D2)

 As a third case, suppose that the optimal decision 𝑎∘ at time 𝑡 is a limit order in the lit 

market for 𝑄∗ shares. Later on, at time 𝑡௥, a trade of one share is executed. Thus, albeit the trader 

has not taken a new decision (i.e., the original decision 𝑎∘ still holds), the trader faces a new state 

𝑠௧ೝ
ொ∗ିଵ, in which she has trades of 𝑄∗ − 1 shares waiting to be executed. The updating process for the 

trader with the optimal action 𝑎∘ can be reflected in the following equation: 

𝑊(𝑎∘|𝑠) =
𝑛௔∘,௦

𝑛௔∘,௦ + 1
𝑊(𝑎∘|𝑠) +

1
𝑛௔෤∗,௦ + 1

𝑒ିఘ೏(௧ೝି௧) ቂ൫𝛼 + 𝑣௧ೝ − 𝑝෤൯𝑥෤ + 𝑊 ቀ𝑎∘ቚ𝑠௧ೝ
ொ∗ିଵቁቃ. (D3)

 As a fourth case, suppose that the optimal decision 𝑎∘ is a dark order in the dark pool for 𝑄∗ 

shares at time t. Immediately after submission, the dark order can be (i) executed as a whole (i.e., 

the 𝑄∗ shares are traded); (ii) partially executed (i.e., not all 𝑄∗ shares are traded); or (iii) not 

executed at all (i.e., none of the 𝑄∗ shares are traded). Thus, despite the trader not taking a new 

decision (i.e., the original decision 𝑎∘ still holds), the trader may face a new state 𝑠௤, in which she 

has 𝑞 shares waiting to be executed. The updating process for the trader with the optimal action 𝑎∘ 

is reflected in the following equation: 

𝑊(𝑎∘|𝑠) =
𝑛௔∘,௦

𝑛௔∘,௦ + 1
𝑊(𝑎∘|𝑠)

+

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 1

𝑛௔∘,௦ + 1
෍(𝛼 + 𝑣௧ − 𝑀௧)𝑥
ொ∗

௤ୀଵ

𝑖𝑓 𝑄∗ 𝑠ℎ𝑎𝑟𝑒𝑠 𝑎𝑟𝑒 𝑡𝑟𝑎𝑑. 𝑎𝑡 𝑡

1
𝑛௔∘,௦ + 1 ቎ ෍ (𝛼 + 𝑣௧ − 𝑀௧)𝑥

ொ∗ିଵ

௤ୀଵ

− 𝑊(𝑎∘|𝑠ଵ)቏ 𝑖𝑓 𝑄∗ − 1 𝑠ℎ𝑎𝑟𝑒𝑠 𝑎𝑟𝑒 𝑡𝑟𝑎𝑑. 𝑎𝑡 𝑡

⋮ ⋮
⋮ ⋮

1
𝑛௔∘,௦ + 1 ൣ(𝛼 + 𝑣௧ − 𝑀௧)𝑥 − 𝑊൫𝑎∘ห𝑠ொ∗ିଵ൯൧ 𝑖𝑓 𝑜𝑛𝑒 𝑠ℎ𝑎𝑟𝑒 𝑖𝑠 𝑡𝑟𝑎𝑑. 𝑎𝑡 𝑡

1
𝑛௔∘,௦ + 1

[𝑊(𝑎∘|𝑠)] 𝑖𝑓 𝑧𝑒𝑟𝑜 𝑠ℎ𝑎𝑟𝑒𝑠 𝑎𝑟𝑒 𝑡𝑟𝑎𝑑. 𝑎𝑡 𝑡 

 , 

(D4)
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where 𝑀௧ is the midquote of the lit market’s best bid and ask prices.33  

 Convergence criteria: We check for convergence after running the trading game for a couple 

of billion trading events. Afterwards, we check the evolution of agents’ beliefs every 500 million 

simulations for convergence. Suppose that the first group of 500 million simulations after we start 

checking for convergence finishes at time 𝑡ଵ. Suppose that the subsequent group of 500 million 

simulations finishes at time 𝑡ଶ. Let 𝑊௧భ(𝑎|𝑠) and 𝑊௧మ(𝑎|𝑠) be the expected payoffs that are 

associated with action 𝑎 when state 𝑠 is present at times 𝑡ଵ and 𝑡ଶ, respectively. In addition, 

suppose that 𝑚௔,௦
௧భ,௧భis the number of times that action 𝑎 was taken between 𝑡ଵ and 𝑡ଶ when traders 

faced state 𝑠. We evaluate the change in the expected value of the expression |𝑊௧భ(𝑎|𝑠) − 𝑊௧మ(𝑎|𝑠)| 

for all pairs (𝑎, 𝑠) weighted by 𝑚௔ ௦
௧భ,௧భ every 500 million simulations. Once this weighted absolute 

difference is smaller than 0.01 (which suggests that the model has converged), we apply two 

further convergence criteria in line with Goettler et al. (2009). 

 As in Goettler et al. (2009), after reaching a small weighted absolute difference in the 

change in the expected values, we fix the agents’ beliefs concerning the expected payoffs, 𝑊∗(∙), and 

simulate the trading game for another 500 million events. Then, we calculate the realized payoffs of 

all order submissions after they have been executed. Let 𝐽ሚ(∙) be the realized payoffs of the 500 

million events. It is important to observe that 𝐽ሚ(∙) is a direct measure of the benefits of trading, 

which is not 'averaged' as in equations (D1) to (D4). First, we require that the correlation between 

𝑊∗(∙) and 𝐽ሚ(∙) is higher than 0.99. Second, we calculate the mean absolute difference between 𝑊∗(∙) 

and 𝐽ሚ(∙), weighted by the number of times that a specific action is selected in a given state in the last 

500 million simulated events, which for convergence we also require to be below 0.01 (i.e., like in 

the previous paragraph when we evaluated the change in the expected value between 𝑊(𝑎෤|𝑠) and 

                                                 
33 We induce trembles in the traders’ decisions to ensure that the updating process considers all possible 
actions in each state when we run the trading game to solve for the equilibrium. Specifically, we disturb the 
traders’ decisions with a small probability 𝜉 that they select actions that are suboptimal while the algorithm 
converges. We set 𝜉 equal to 0.5%. In the case of a tremble, the trader selects among all suboptimal actions 
with equal probability. Once we reach the equilibrium of the model, we make 𝜉 equal to zero.  
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𝑊௧మ
(𝑎෤|𝑠) weighted by 𝑚௔෤,௦

௧భ,௧భ). If any convergence criterion is not reached, we continue simulating 

the trading game and updating the beliefs until all convergence criteria are satisfied.  
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Figure 1. Expected payoffs of limit, market, and dark orders in two simple examples (one example 
with a speculator and the other with a liquidity trader). This figure shows the expected payoffs of two 
traders as a function of the asset value, 𝑣, for the different order types. Panel A reflects the first simple 
example, where there is a speculator (i.e., a trader with a positive and small private value 𝛼௦). Panel B shows 
the second simple example, in which there is a liquidity trader (i.e., a trader with a positive and large private 
value 𝛼௅). The range of potential values of the asset depends on the level of the asset volatility (which is low 
(𝜎∗), medium (𝜎∗∗), or high (𝜎∗∗∗)). In both examples, the trader can buy the asset share by using either a 
market order, 𝑀𝑂, or a limit, 𝐿𝑂, in the limit order market, or through a dark order, 𝐷𝑂, in the dark pool. 
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Figure 2. Percentages of order type executions as a function of the asset volatility (for two groups of traders under different market setups). 
This figure shows the percentages of executions of limit, market, and dark orders, as a function of the asset volatility. Thus, traders can submit orders in 
either the limit order market, LM, or the dark pool, DP. Panels A-C show the order preferences for speculators (i.e., agents with zero private value gained 
from trading immediately). Panels D-F present the order preferences for liquidity traders (i.e., agents with absolute private value equal to eight, who 
want to trade as soon as possible to obtain such private value). Order preferences are presented under three market setups: only a limit order market 
(Only LM), a limit order market and a dark pool under a time execution priority for dark orders (LM + DP(time priority)), and a limit order market and a 
dark pool under a size execution priority for dark orders (LM + DP(size priority)). The volatility of the asset is proxied by the rate of change of the asset 
value, 𝜆௏.  
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Figure 3. Market shares of the lit market and the dark pool as functions of the asset volatility. This figure reports the market shares of the limit 
order market, LM, and the dark pool, DP, as functions of the asset volatility, for each trader type in relation to their private values (Panels A-C), for 
traders with small and large orders (Panels D-E), and for all traders (Panel F). The results are presented under different market setups, which were 
described in Figure 2. The volatility of the asset is proxied by the rate of change of the asset value, 𝜆௏.  
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Figure 4. The effect of asset volatility on market liquidity. Panel A shows the bid-ask spread in the lit 
market, LM, as a function of the asset volatility. This table also presents the total liquidity costs in the lit 
market (Panel B), in the dark pool (Panel C), and in the whole system (Panel D). The liquidity costs are 
obtained by taking the difference between the realized payoff without liquidity costs and the realized payoff 
with liquidity costs, as in equation (5). The bid-ask spread and the liquidity costs are expressed in ticks. The 
results are presented under different market setups, which were described in Figure 2. The volatility of the 
asset is proxied by the rate of change of the asset value, 𝜆௏ .  
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Figure 5. The effect of market liquidity on dark trading activity. This figure shows the market share of 
the dark pool as a function of the bid-ask spread in the lit market (Panel A), and as a function of the liquidity 
costs of the whole system (Panel B). Traders can submit orders in either the limit order market, LM, or the 
dark pool, DP. The liquidity costs are obtained by taking the difference between the realized payoff without 
liquidity costs and the realized payoff with liquidity costs, as in equation (5). The bid-ask spread and the 
liquidity costs are expressed in ticks. The results are presented under different market setups, which were 
described in Figure 2.  
 
 
 
 
 
 

  
 
Figure 6. The effect of asset volatility on the system’s welfare. In this figure, Panel A presents the welfare 
of the complete system as a function of the asset volatility. Panel B shows the contributions of the lit market, 
LM, and the dark pool, DP, to the welfare. We measure welfare as the expected payoff per traded share as in 
equation (6), which implicitly includes a selection of different trader types and order sizes. The welfare of the 
system is expressed in ticks. The results are presented under different market setups, which were described 
in Figure 2. The volatility of the asset is proxied by the rate of change of the asset value, 𝜆௏ .  
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Figure 7. The effect of asset volatility on the welfare of agents with different private values. In this 
figure, Panels A, C, and D show the welfare of agents with private value equal to zero (Panel A), with private 
values -4 and 4 (Panel C), and with private values -8 and 8 (Panel D), as functions of the asset volatility. Panels 
B, D, and F show the contributions of the lit market, LM, and the dark pool, DP, to the welfare as functions of 
the asset volatility (conditional on the trader type in terms of their private values). We measure welfare as 
the expected payoff per traded share. The welfare is expressed in ticks. The results are presented under 
different market setups, which were described in Figure 2. The volatility of the asset is proxied by the rate of 
change of the asset value, 𝜆௏ .  
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Figure 8. The effect of asset volatility on the welfare of traders with different order sizes. This figure 
shows the welfare of agents with small orders (Panel A) and with large orders (Panel C), as functions of the 
asset volatility. Panels B and D present the contributions of the lit market, LM, and the dark pool, DP, to the 
welfare as functions of the asset volatility (conditional on the trader type in terms of different order sizes). 
We measure welfare as the expected payoff per traded share. The welfare is expressed in ticks. The results 
are presented under different market setups, which were described in Figure 2. The volatility of the asset is 
proxied by the rate of change of the asset value, 𝜆௏ .  
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Table A1. Variable definitions. This table provides a glossary of all the variables that are used in our study. 
Variable Description 

Variables in Section 3 
LM Trading venue: lit market 
DP Trading venue: dark pool 
𝜆 The arrival rate (Poisson process) of new traders  
𝑣௧ The fundamental value of the asset at any instant 𝑡  
𝜆௩ Innovations (Poisson process) in the fundamental value 

𝐿௧ The limit order book associated with the lit market which is characterized by a finite set of 𝑁 
discrete prices {𝑝௜}௜ୀିே

ே , where 𝑝௜ < 𝑝௜ାଵ  
𝑑 The tick size defined as the distance between two consecutive prices  

𝑙௧
௜  The queue of shares from unexecuted limit orders at price 𝑝௜and time 𝑡. A positive (negative) 

number for 𝑙௧
௜  denotes buy (sell) limit orders 

𝐵௧, 𝐴௧ The best bid and the best ask price at any instant 𝑡 
𝑀௧ The midquote of the lit market’s best bid and best ask prices; the dark pool’s price setting rule 
𝑘௧ The single queue of shares from unexecuted dark orders, 𝑘௧, at time 𝑡, for the single price 𝑀௧ 
Δ௧ The time lag at which all the traders observe the fundamental value  
𝜆௥ The re-entry rate (Poisson process) of traders with more shares to trade 
ρ The rate at which payoffs from trades are discounted back to the time of entry (discount rate)  
𝛼 A trader’s private value that represents reasons for trading 
𝐹ఈ Private values’ discrete distribution 

𝛾ఈ (1 − 𝛾ఈ) The probability that the market participant is a small (large) trader  
𝑄 The maximum number of shares a new large trader can trade 
𝑠 The state observed on a particular entry to the market 
𝑎 A trader’s optimal action in state 𝑠  

𝒜(𝑠) The set of feasible trading decisions a trader can take in state 𝑠 

𝑞 The share indicator with 𝑞 = {1,2, … , 𝑄∗ ≤ 𝑄 }, where 𝑄∗is the number of remaining shares of the 
order 

𝜂(⋅) The probability density that a share is traded at some future time  
𝜋(⋅) A trader’s expected payoff of taking an optimal decision in a given state 
𝑝௤ The order’s price 
x The order’s direction 

 𝛾(⋅) The density function of the asset value at time of execution 
𝜓(⋅) The probability that a state is observed at some future time after a trader’s re-entry 

𝒮 The set of potential states at re-entry 
𝑅(⋅) The cumulative probability distribution of the time at which the trader re-enters the economy 
𝑉(⋅) The value to an agent of being in any given state 

Variables in Section 4 
𝑆, 𝛼ௌ  A speculator with private value 𝛼ௌ 
𝐿, 𝛼௅  A liquidity trader with private value 𝛼௅ 

𝜎∗, 𝜎∗∗, 𝜎∗∗∗  The asset’s volatility, which can take three values: low (𝜎∗), medium (𝜎∗∗), or high (𝜎∗∗∗)  
𝑀𝑂, 𝐴 Buy market order at price 𝐴 
𝐿𝑂, 𝐵 Buy limit order at price 𝐵 
𝐷𝑂, 𝑀 Dark order at price 𝑀 

𝜙 The probability that the DO is not immediately traded 
Variables in Section 6 

𝐺௭(𝜆௩) The expected payoff per traded share for trader type 𝑧 as a function of the asset’s volatility 𝜆௩  
𝑈(⋅) Utilitarian welfare 
𝜔௭  Proportion of trader type 𝑧 in the market 



61 
 

Variables in Appendix D 

𝑊(𝑎|𝑠) The agents’ belief concerning the expected payoff that is associated with action 𝑎෤ when state 𝑠 is 
observed at time 𝑡ଵ 

𝑛௔,௦  A counter that increases by one when (optimal) action 𝑎 - that offers the maximum expected payoff 
out of all possible actions - is taken in state s 

𝐽ሚ(∙) An order’s realized payoff 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table B1. Summary of the main results of our study. This figure shows a summary of the main results of 
our study comparing the impacts on trading activity, liquidity, and welfare of changes in the execution 
priority rules in the dark pool, adverse selection, and traders' competition. 

Summary table of results 
  Lit market Dark pool Lit-dark system 

(whole market) 

Execution priority 
rules 

 Size execution priority rule for dark orders 
Trading activity ↓ ↑ - 
Liquidity ↓ ↑ ↑ 
Welfare ↓ ↑ ↑ 
 Time execution priority rule for dark orders 
Trading activity ↑ ↓ - 
Liquidity ↑ ↓ ↓ 
Welfare ↑ ↓ ↓ 

Adverse selection 

 Asset volatility ↑ (adverse selection ↑) 
Trading activity ↑↓ ↑↓ - 
Liquidity ↓ ↓ ↓ 
Welfare ↑↓ ↑↓ ↓ 

Traders' 
competition 

 One market: the lit market (traders' competition ↑) 
Trading activity ↑ - - 
Liquidity ↑ - - 
Welfare ↑ - - 
 Two markets: the lit and dark markets (traders’ competition ↓) 
Trading activity ↓ ↑ - 
Liquidity ↓ ↑ ↓ 
Welfare ↓ ↑ ↓ 
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Figure C1. Picking-off risk and percentage of orders from speculators that follow a picking-off strategy 
as a function of the asset volatility. In this figure, Panel A reports the picking-off risk of all waiting orders 
(i.e., unexecuted dark orders and unexecuted limit orders) as a function of the asset volatility. Panel B 
presents the proportion of executed orders in the whole system (i.e., in the lit market, LM, and the dark pool, 
DP) from speculators (i.e., traders with private value equal to zero) that were submitted by following a 
picking-off strategy. Panel C shows the proportion of executed orders from speculators in each market that 
were submitted by following a picking-off strategy. The results are presented under different market setups, 
which were described in Figure 2. The volatility of the asset is proxied by the rate of change of the asset value, 
𝜆௏ .  
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