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▸ Rising industry concentration (Kwon et al. 2022)

● Research Question: what’s behind this heterogeneity? What’s 
driving these trends? What are the welfare implications?
▸ Consumer surplus and deadweight loss due to oligopoly

● Challenge: IO question in a macroeconomic setting:
▸ Tools of empirical IO are not available (scalability, lack of data)
▸ No systematic, objective way to define product markets.
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● Theory of oligopoly and markups in general equilibrium
▸ Forget about industries: in this model, oligopolistic firms 

compete in a network of product market rivalries.
▸ New demand system: Generalized Hedonic-Linear (GHL).

● Taken to the data (and validated) for universe of US public 
firms, using product similarity data by Hoberg & Phillips (2016).

● Decompose markups into 2 forces: productivity and centrality.

● Welfare measurement: large, increasing oligopoly deadweight 
loss (12.7% of total surplus in 2019), major distributional effects.

This Paper
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● Rising Markups and Industry Concentration: De Loecker, 
Eeckhout & Unger (2020), Grullon, Larkin & Michaely (2019); 
Kwon, Ma & Zimmermann (2021), Eeckhout & Veldkamp (2022).

● Distortions, Input/Output, Micro Origins of Aggregate TFP: 
Gabaix (2011); Acemoglu, Carvalho, Ozdaglar, Tahbaz-Salehi 
(2012); Baqaee & Farhi (2020); Bigio & La’O (2020); Edmond, 
Midrigan & Xu (2019); Carvalho, Elliot & Spray (2022);

● Hedonic Demand/Empirical IO: Lancaster (1968); Rosen (1974); 
Epple (1987) Berry, Levinsohn & Pakes (1994); Nevo (2001)…

● Network Games: Ballester, Calvo-Armengol & Zenou (2006); 
Galeotti, Golub, Goyal, Talamer & Tamuz (2022).

● Text Analysis/Product Similarity: Hoberg & Phillips (2016).

Literature
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● Hedonic demand: each firm’s product is a bundle of 
characteristics (Lancaster, 1968; Rosen, 1974; Epple, 1987; 
Berry, Levinsohn & Pakes 1994; etc.)

● 1 unit of product i provides: 
▸ 1 unit of an idiosyncratic characteristic i 
▸ a vector of k common characteristics ai (length 1)
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A basic example: 2 firms, 2 characteristics
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Aggregating common characteristics
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Defining Cosine Similarity
A′A is called the matrix 

of cosine similarities 

Hoberg & Phillips (2016) 
provide a time-varying 
estimate of this object
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● Quadratic utility U (x,y,H) = 

  

                                 
 

Representative Consumer-Worker-Investor

Letting yi be the number of units of each characteristics I assume that each unit of good i provides exactly
one unit of its corresponding idiosyncratic characteristic:

y = q (2.7)

The representative agent’s preferences are described by a utility function that is quadratic in both common
characteristics (x) and idiosyncratic characteristics (y). The agent’s preferences also incorporate a linear
disutility for the total number of hours of work supplied (H):
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where b
x

k
and b

q

i
are characteristic-specific preference shifters. In linear algebra notation:
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def
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2
· x

0
x
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y
0
b
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�
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2
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0
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◆
�H (2.9)

↵ 2 [0, 1] is the utility weight that is assigned to common characteristics. Hence, it governs the degree of
horizontal di↵erentiation among products. This class of preferences was used before by Epple (1987) as a
parametric case in a study of the identification of hedonic equilibrium models. To his framework, I add
idiosyncratic characteristics, which provide an additional degree of flexibility in the empirics (through the
parameter ↵), while not making a di↵erence on the theoretical level. By making leisure the outside good, I
close the model and make it general equilibrium. 4

The representative consumer buys the goods bundle q taking p (the vector of prices) as given. Moreover, I
assume that the representative consumer is endowed with the shares of all the companies in the economy.
As a consequence, the aggregate profits are paid back to them. Their consumption basket, defined in terms
of the unit purchased q, respects the following budget constraint:

H +⇧ �

nX

i=1

piqi (2.10)

To streamline notation, let us define::

b
def
= ↵A

0
b
x + (1� ↵)bq (2.11)

Then, plugging equation (2.6) and (2.11) inside equation (2.9), we obtain the following Lagrangian for the
representative consumer:

L (q, H) = q
0
b�

1

2
q
0 [I+ ↵ (A0

A� I)]q�H � � (q0
p�H �⇧) (2.12)

The choice of labor hours as the numéraire immediately pins down the Lagrange multiplier � = 1. Then,
the consumer chooses a demand function q (p) to maximize the following consumer surplus function:

S (q)
def
= q

0 (b� p)�
1

2
q
0 [I+ ↵ (A0

A� I)]q (2.13)

Let us now define the concept of cosine similarity.

Definition 2. We call the dot product a0
i
aj the cosine similarity between i and j.

4Two additional key di↵erences are 1) in Epple’s model sellers act as price-takers, while here they oligopolistically; 2) Consumer
choice is discrete in Epple’s model, and discrete here.

7
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Inverse Demand and Conduct

     

More explicitly, the component (A0A)
ij
= a0

i
aj measures the cosine of the angle between vectors ai and aj

in the space of characteristics Rk:3 A higher cosine similarity score reflects a lower angular distance. In other
words, if the cosine similarity between i and j (a0

i
aj) is high, the outputs of i and j contain a more similar

set of characteristics. The intuition for the fact that the quadratic term contains this matrix is that if two
products i and j contain a similar set of characteristics (that is, if the cosine between i and j is high), there
is a high degree of substitution between these two products; as a consequence, an increase in the supply
of product i will have a large negative impact on the marginal utility provided by one additional unit of
product j.

Figure 1 helps visualize this setup for the simple case of two firms—1 and 2—competing in the space
of two characteristics A and B. As can be seen in the figure, both firms exist as vectors on the unit circle
(with more than three characteristics, it would be a hypersphere). The cosine similarity a0

i
aj captures the

tightness of the angle ✓ and, therefore, the similarity between firm 1 and firm 2. An increase in the cosine
of the angle ✓ (a lower angular distance) reflects a more similar set of characteristics, and therefore a higher
degree of substitution between firm 1 and firm 2.

We can streamline the notation further by defining:

⌃
def
= ↵ (A0A� I) (2.18)

then the demand and inverse demand functions are given by:

Aggregate demand : q = (I+⌃)
�1

(b� p) (2.19)

Inverse demand : p = b� (I+⌃)q (2.20)

Notice that the quantity sold by each firm may affect the price of the output sold by every other firm in
the economy (unless the matrix I+⌃ equals the identity matrix), hence there is imperfect substitutability
among the products. In particular, the derivative @pi/@qj is proportional to a0

i
aj : the product similarity

between i and j. The closer two firms are in the product-characteristics space, the higher the cross-price
elasticity between the two firms. Because A0A is symmetric, we have @qi/@pj = @qj/@pi by construction.
As a consequence, the (inverse) cross-price elasticities of demand are:

Inverse cross� price elasticity of demand :
@ log pi

@ log qj
= �qj

pi
· �ij (2.21)

Cross� price elasticity of demand :
@ log qi

@ log pj
= �pj

qi
·
�
⌃

�1
�
ij

(2.22)

My choice to use a linear demand system is motivated by a recent literature that has investigated the
implications of different demand systems on allocative efficiency and market power.4 Linear demand has
super-elasticity—that is, the elasticity of demand decreases with firm size. I discuss the implications of linear
demand at length in Appendix F.

3This is a consequence of the normalization assumption that all vectors ai are unit vectors.
4See ?Haltiwanger et al. (2018).

9
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(with more than three characteristics, it would be a hypersphere). The cosine similarity a0

i
aj captures the

tightness of the angle ✓ and, therefore, the similarity between firm 1 and firm 2. An increase in the cosine
of the angle ✓ (a lower angular distance) reflects a more similar set of characteristics, and therefore a higher
degree of substitution between firm 1 and firm 2.

We can streamline the notation further by defining:

⌃
def
= ↵ (A0A� I) (2.18)

then the demand and inverse demand functions are given by:

Aggregate demand : q = (I+⌃)
�1

(b� p) (2.19)

Inverse demand : p = b� (I+⌃)q (2.20)

Notice that the quantity sold by each firm may affect the price of the output sold by every other firm in
the economy (unless the matrix I+⌃ equals the identity matrix), hence there is imperfect substitutability
among the products. In particular, the derivative @pi/@qj is proportional to a0

i
aj : the product similarity

between i and j. The closer two firms are in the product-characteristics space, the higher the cross-price
elasticity between the two firms. Because A0A is symmetric, we have @qi/@pj = @qj/@pi by construction.
As a consequence, the (inverse) cross-price elasticities of demand are:
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Cross� price elasticity of demand :
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·
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�
ij

(2.22)

My choice to use a linear demand system is motivated by a recent literature that has investigated the
implications of different demand systems on allocative efficiency and market power.4 Linear demand has
super-elasticity—that is, the elasticity of demand decreases with firm size. I discuss the implications of linear
demand at length in Appendix F.

3This is a consequence of the normalization assumption that all vectors ai are unit vectors.
4See ?Haltiwanger et al. (2018).
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● Cournot Competition: firm i chooses supply qi to maximize 
profits function πi  à (Linear-quadratic) Network game
▸ Ballester, Calvó-Armengol & Zenou, 2006

● Why? the matrix of cosine similarities A′A (proportional to 
Σ) can be thought of as an adjacency matrix of a network
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Cournot-Nash Equilibrium

where �
def
=

2

6664

�1 0 · · · 0
0 �2 · · · 0
...

...
. . .

...
0 0 · · · �n

3

7775
and F

def
=

nX

i=1

fi (2.24)

Because the oligopolists in this model will be actual firms in the data (who produce positive output by
definition) we can look directly at the unique internal solution.

Proposition 1. The Cournot-Nash equilibrium is q
�
– the maximizer of the potential function � (·):

q
� def

= argmax
q

� (q) (2.25)

it is the fixed point of the following equation:

q
� = (2I+⌃)�1

⇥
b� c

�
q
�
�⇤

(2.26)

in particular, if the cost function is quadratic:

q
� = (2I+�+⌃)�1

�
b� c

0
�

(2.27)

Proof. The derivation of the potential function, as well as the proof that its maximizer q
� is the genuine

Nash equilibrium, appear in Appendix A.

Equation (2.26), which provides a closed-form solution for the case where the cost function is quadratic,
allows us to take a closer look at the determinants of equilibrium firm size. The diagonal matrix �, which
contains the slopes of the marginal cost functions, captures economies of scale. ⌃ is the adjacency matrix
of the network of product rivalries. b and c

0 are, respectively, the demand and supply function intercepts.
Hence, (bi � ci) is simply the marginal surplus of the very first unit produced by firm i; also, bi can be
interpreted as a measure of vertical product di↵erentiation (quality).

BCZ show that another way to interpret equation (2.26) is as a measure of network centrality – specifically,
that developed by Katz (1953) and Bonacich (1987). The intuition is that firms that are more “isolated” in
the network of product similarities face less product market competition and behave more like monopolists.
Centrality measures are a recurring feature of the literature on networks in macroeconomics (see Carvalho
and Tahbaz-Salehi, 2019). In Appendix C, I discuss in further detail the link between Nash equilibrium and
network centrality.

The discrepancy between the potential function and the total-surplus function implies that the network
Cournot game delivers an equilibrium allocation that is not socially-optimal. A benevolent social planner
can theoretically improve on the market outcome for two reasons. First, they can coordinate output choices
across firms; second, they can internalize consumer surplus.

2.4. Generality of the Utility Specification and the role of Idiosyncratic Characteristics

In Appendix B I prove that the utility specification in equation (2.9) is identical, up to series of welfare-
invariant normalizations, to the much more general form

U (x,y, H)
def
= ⌧1x

0
b
x
�

⌧2

2
· x

0
M

x
x+

⌧3

2
y
0
b
y
�

⌧4

2
y
0
M

y
y � ⌧5H (2.28)

x = A
x
q and y = A

y
q (2.29)

where M
x is a diagonalizable (but not necessarily diagonal) matrix, M

y and A
y are diagonal (but not

necessarily identity) matrices, and we do not require ka
x

k
k = 1 for all k. In addition we do require – only

11
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The expression above can be shown to be a 
measure of network centrality (Katz-Bonacich)
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definition) we can look directly at the unique internal solution.

Proposition 1. The Cournot-Nash equilibrium is q
�
– the maximizer of the potential function � (·):

q
� def

= argmax
q

� (q) (2.25)

it is the fixed point of the following equation:

q
� = (2I+⌃)�1

⇥
b� c

�
q
�
�⇤

(2.26)

in particular, if the cost function is quadratic:

q
� = (2I+�+⌃)�1

�
b� c

0
�

(2.27)

Proof. The derivation of the potential function, as well as the proof that its maximizer q
� is the genuine

Nash equilibrium, appear in Appendix A.

Equation (2.26), which provides a closed-form solution for the case where the cost function is quadratic,
allows us to take a closer look at the determinants of equilibrium firm size. The diagonal matrix �, which
contains the slopes of the marginal cost functions, captures economies of scale. ⌃ is the adjacency matrix
of the network of product rivalries. b and c

0 are, respectively, the demand and supply function intercepts.
Hence, (bi � ci) is simply the marginal surplus of the very first unit produced by firm i; also, bi can be
interpreted as a measure of vertical product di↵erentiation (quality).

BCZ show that another way to interpret equation (2.26) is as a measure of network centrality – specifically,
that developed by Katz (1953) and Bonacich (1987). The intuition is that firms that are more “isolated” in
the network of product similarities face less product market competition and behave more like monopolists.
Centrality measures are a recurring feature of the literature on networks in macroeconomics (see Carvalho
and Tahbaz-Salehi, 2019). In Appendix C, I discuss in further detail the link between Nash equilibrium and
network centrality.

The discrepancy between the potential function and the total-surplus function implies that the network
Cournot game delivers an equilibrium allocation that is not socially-optimal. A benevolent social planner
can theoretically improve on the market outcome for two reasons. First, they can coordinate output choices
across firms; second, they can internalize consumer surplus.

2.4. Generality of the Utility Specification and the role of Idiosyncratic Characteristics

In Appendix B I prove that the utility specification in equation (2.9) is identical, up to series of welfare-
invariant normalizations, to the much more general form

U (x,y, H)
def
= ⌧1x

0
b
x
�

⌧2

2
· x

0
M

x
x+

⌧3

2
y
0
b
y
�

⌧4

2
y
0
M

y
y � ⌧5H (2.28)

x = A
x
q and y = A

y
q (2.29)

where M
x is a diagonalizable (but not necessarily diagonal) matrix, M

y and A
y are diagonal (but not

necessarily identity) matrices, and we do not require ka
x

k
k = 1 for all k. In addition we do require – only
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Hedonic-Adjusted Productivity

di↵erent firms is typically measured in volumetric units that are not comparable; b) even when output units
are comparable, the production technology may di↵er across firms; c) even keeping technology constant,
the quality of output may vary. In fact hedonic adjustment is increasingly used in national statistics to
construct good price indices that account for changes in quality. These adjustments have been shown to
exert a significant e↵ect on measured productivity growth (Moulton et al., 2001).

To construct such an “ideal” productivity measures, we start from the observation that the model admits a
clear measure of quality, bi, which is the representative agent’s willingness to pay for the first unit of good
i when the supply of every other product is zero. The next step is to exploit the fact that a change of
volumetric units (say, from pounds to kilograms) has the e↵ect of scaling up bi and ci by exactly the same
factor. By taking the ratio between bi and ci, we obtain a measure of productivity that adjusts for product
quality, is welfare-relevant (see below), and is invariant to changes in volumetric units. We call this ratio
“hedonic-adjusted productivity”.

Definition 5. We define !i –the “hedonic-adjusted productivity” of firm i– as the ratio between the marginal
utility of the very first unit produced (bi) and the marginal cost (MCi) – formally:

!i

def
=

bi

ci
(2.33)

It is easy to prove that the markup that firm i charges in equilibrium (µi) is bounded above by its quality-
adjusted productivity.

Lemma 1. In the Nash-Cournot equilibrium allocation, firm i’s equilibrium markup is always less than the

“monopolistic” markup µ̄i, which takes on the following expression:

µi  µ̄i

def
=

bi + ci

2ci
⌘

1 + !i

2
(2.34)

with equality if and only if firm i has degree centrality equal to zero (di = 0).

Proof. Appendix (G).

To write the equilibrium markup in terms of productivity and centrality, let us re-write equation (2.26) in
terms of the matrix �:

q
� =

1

2
· � (b� c) where � ⌘

2

6664

�11 �12 · · · �1n

�21 �22 · · · �2n

...
...

. . .
...

�n1 �n2 · · · �nn

3

7775
def
=

✓
I+

1

2
⌃

◆�1

(2.35)

We can further rewrite equation (2.35) as:

q
�

i
=

1

2

2

4�ii +
X

j 6=i

�ij
bj � cj

bi � ci

3

5 (bi � ci) (2.36)

Appealing to the Nash equilibrium-centrality linkage, we can interpret the term in square brackets as a
measure of (inverse) centrality, that captures how “far” firm i is from every other firm j, and weights each
rival j by its competitiveness (bj � cj) relative to i. We can thus formally define the product market centrality
of firm i.

13

• Accounts for product quality
• Volumetric-invariant
• Comparable across widely-different firms
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Decomposing Markups

Definition 6. We define �i, the product market centrality of firm i as follows:

1� �i

def
= �ii +

X

j 6=i

�ij
bj � cj

bi � ci
(2.37)

It is a measure of centrality because it “summarizes” the entire matrix of cross-price derivatives into an
n-dimensional vector. What we have done, intuitively, is to replace

�
I+ 1

2
⌃
��1

with a diagonal matrix that
has (1� �i) along the diagonal, to obtain:

q
�

i
=

1� �i

2
(bi � ci) (2.38)

Importantly, this measure of centrality only depends on exogenous objects, and it is the one that determines
how close to competitive (or monopolistic) is the markup charged by firm i in equilibrium.

Proposition 3. The equilibrium markup µi is equal to a product market centrality (�i)-weighted convex com-

bination of 1 (the lowest possible markup), and the monopolistic markup µ̄i:

µi = �i + (1� �i) µ̄i (2.39)

Corollary. The product market centrality ranges from zero to one: �i 2 [0, 1] .

Proof. Appendix G.

This proposition links the topology of the rivalry network to the residual demand elasticity faced by individual
firms: a firm that is highly central (�i ! 1) has many competitive rivals that produce products with similar
characteristic to its own, and thus behaves similarly to an atomistic firm. Vice-versa, a firm that is highly
peripheral (�i ! 0) behaves like a monopolist.

2.6. Consumer Surplus, Shapley Value and Surplus Appropriation

The surplus that firms produce is either appropriated by firms in the form of profits, or by consumers in the
form of consumer surplus. It is thus natural to ask the following question: how much (consumer) surplus
does each firm contribute? And how does oligopoly power a↵ect firm’s ability to to appropriate surplus?
These might seem like questions that are not well posed: after all, the consumer surplus contributed by firm
i depends on how much output every other firm j is producing.

Luckily, the problem of how to attribute surplus to players in a game with non-linear utilities has already
been studied in the theory literature, and we know that there is a natural, economically-meaningful metric
that accomplishes this objective: the Shapley Value. While the Shapley Value is usually utilized to break
down total surplus in coalitional games, there is nothing that prevents us from applying the same concept
to consumer surplus in a game of oligopoly.

To break down aggregate consumer surplus using the Shapley value, we start by writing down the expression
for the consumer surplus generated by qi units of good i when all other firms supply q̄�i (taken as given).
We know from basic price theory that this quantity can be computed by integrating the di↵erence between
the residual demand and the purchase price pi

5:

Z
qi

0

0

@bi � q
0
i
�

X

j 6=i

�ij q̄j � pi

1

A dq0
i

= qi (bi � pi)�
1

2
q
2

i
�

X

j 6=i

�ijqiq̄j (2.40)

5When integrating consumer surplus, we must remember to treat pi as a constant, since consumers are price-takers.
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Decomposing Markups

Monopolistic Markup 
= (1 + ωi)/2
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Decomposing Markups

Product Market Centrality
Depends on the entire matrix of cosine 

similarities A′A. The profit share of surplus 
is a decreasing function of χi alone

Monopolistic Markup 
= (1 + ωi)/2
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● Similarity scores constructed by text mining the “Business 
Description” section of 10-K filings; already standard in Finance.
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● Similarity scores constructed by text mining the “Business 
Description” section of 10-K filings; already standard in Finance.

● Solve long-standing problems with NAICS/SIC: static, binary do 
not really reflect product market competition (not used in I.O.)

● Construction:

               

Hoberg & Phillips (2016 JPE) Product Similarity

3. Data, Identification and Model Fit

In this section, I outline the data used to estimate the model in Section 2. Additional details are provided

in Appendix D, which also contains Table 2, where model mapping and identification are summarized.

3.1. Firm Financials

My data source for firm financials is the Compustat database, which I access via the Wharton Research

Data Services (WRDS) platform. From this database, I extract information on firm revenues, Costs of

Goods Sold (COGS), Selling General and Administrative (SGA) costs, R&D expenditures and Property

Plant and Equipment (PPE).

I follow (De Loecker, Eeckhout and Unger, 2020, henceforth DEU) in mapping accounting revenues to

model revenues, COGS to variable costs, and in computing an estimate of fixed costs costs (fi):

fi  SGAi + Property Plant&Equipment
i
⇥User Cost of Capital (3.1)

3.2. Text-Based Product Similarity

The key data ingredient that we need, in order to estimate my model, is the matrix of product similarities

A
0
A. The empirical counterpart of this object is provided by Hoberg and Phillips (2016, henceforth HP).

HP created a publicly-available database that provides product cosine similarities for the universe of

public corporations in the United States. These cosine similarities originate from natural language processing

(NLP) of 10-K filings, and are time-varying. A complete matrix of similarities is provided for every year,

beginning in 1997.

The 10-K is a mandatory form that is filed by American public corporations with the U.S. Securities and

Exchange Commission on a yearly basis. Item 1 of the 10-K is a long and detailed description of the product

or service sold by the company. HP’s product cosine similarities are constructed by comparing these textual

product descriptions.

I briefly outline the construction of this dataset. HP start by building a vocabulary of 61,146 words

that firms use to describe the characteristics of their products. Let us call the set of words comprising this

vocabulary V = {1, 2, ..., 61146}.9

Based on this vocabulary, HP produce, for each firm i, a vector of word frequencies vi. Each of component

of this vector corresponds to a word in HP’s vocabulary, and is equal to the number of times that word appears

in firm i’s 10-K product description:

vi =

2

66664

vi,1

vi,2

...

vi,61146

3

77775
(3.2)

9I report here verbatim the methodology description from the original paper by Hoberg and Phillips (2016):“[...] In our main

specification, we limit attention to nouns (defined by Webster.com) and proper nouns that appear in no more than 25 percent

of all product descriptions in order to avoid common words. We define proper nouns as words that appear with the first letter

capitalized at least 90 percent of the time in our sample of 10-Ks. We also omit common words that are used by more than

25 percent of all firms, and we omit geographical words including country and state names, as well as the names of the top

50 cities in the United States and in the world. [...]”

19

Finally, the HP cosine similarity between firm i and firm j is defined as follows:

cosHP

ij

def
=

v
0
i
vjp

kvik kvjk
(3.3)

The fact that all publicly-traded firms in the United States are required to file a 10-K form makes

this data set unique, in that it covers the near entirety (97.8%) of the Compustat universe. HP use these

cosine similarities to produce a dynamic industry classification, called TNIC, which they extensively validate:

one way they validate their data (in the paper that presents their methodology) is by using another dataset

called CapitalIQ. This dataset provides dummy variables for a sub-set of Compustat firm pairs which identify

product market rivalry relationships; they are based on corporate filings as well as other sources (no time

variation is available in this dataset). HP show that TNIC outperforms SIC and NAICS in predicting

competitor pairs in CapitalIQ.

Since their introduction in 2011, HP’s industry classifications have become standard in the empirical

corporate finance literature, where they have replaced NAICS and SIC for a variety of applications. A major

reason for this methodological shift is that HP’s dataset addressed an important limitation of traditional

industry classifications. While these have often been used (for lack of better alternatives) to capture product

market competition10, it is well-known that they are based on the concept of production process similarity,

not product similarity11. This is also one reason why, in the I.O. and Antitrust literature, NAICS and SIC

are generally only used to estimate production functions12.

There are other factors that di↵erentiate HP’s database from traditional industry classifications. While

NAICS and SIC are binary (firms are either in the same industry or di↵erent industries), HP’s database also

provides continuous similarity scores ranging from zero to one, thus accommodating the inherent fuzziness

of product market rivalries. While NAICS and SIC are seldom updated, HP’s similarity scores are updated

yearly. While NAICS and SIC are arbitrarily assigned (Chen et al., 2016 show that firms strategically

manipulate their industry classifications), HP’s similarity scores are rule-driven and incentive-compatible:

executives face legal liability for misrepresenting company information in SEC filings.

I begin my empirical analysis by visualizing HP’s dataset. To do so, I have to reduce the dimensionality

of the dataset from 61,146 (the number of words in the HP’s vocabulary) to two. I do so using the algorithm

of Fruchterman and Reingold (1991, henceforth FR), which is widely used in network science to visualize

weighted networks13.

The result of this exercise is Figure 2: every dot in the graph is a publicly traded firm as of 2004. Firm

pairs that have a high cosine similarity appear closer, and are joined by a thicker line. Conversely, firms that

are more dissimilar are not joined, and are more distant. From the graph, we can see that the distribution

of firms over the space of product characteristics is manifestly uneven: some areas are significantly more

densely populated with firms than others. Also, the network displays a pronounced community structure:

large groups of firms tend to cluster in certain areas of the network.

10Before HP’s data was published, Bloom, Schankerman and Van Reenen (2013) constructed cosine similarities to estimate
R&D spillovers. They used Compustat Segments data, which is based on NAICS/SIC industries. This dataset’s coverage of
Compustat is insu�cient to estimate my model (not enough firms/years available).

11See the following Bureau of Labor Statistics Guide.
12For example: DEU’s method to compute markups uses production function estimates for NAICS industries.
13The algorithm models the network nodes as particles, letting them dynamically arrange themselves on a bidimensional surface
as if they were subject to attractive and repulsive forces. One known shortcoming of this algorithm is that it is sensitive to
the initial configurations of the nodes, and it can have a hard time uncovering the cluster structure of large networks. To
mitigate this problem, and to make sure that the cluster structure of the network is properly displayed, I pre-arrange the
nodes using the OpenOrd algorithm (which was developed for this purpose) before running FR.

20
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yearly. While NAICS and SIC are arbitrarily assigned (Chen et al., 2016 show that firms strategically

manipulate their industry classifications), HP’s similarity scores are rule-driven and incentive-compatible:

executives face legal liability for misrepresenting company information in SEC filings.

I begin my empirical analysis by visualizing HP’s dataset. To do so, I have to reduce the dimensionality

of the dataset from 61,146 (the number of words in the HP’s vocabulary) to two. I do so using the algorithm

of Fruchterman and Reingold (1991, henceforth FR), which is widely used in network science to visualize

weighted networks13.

The result of this exercise is Figure 2: every dot in the graph is a publicly traded firm as of 2004. Firm

pairs that have a high cosine similarity appear closer, and are joined by a thicker line. Conversely, firms that

are more dissimilar are not joined, and are more distant. From the graph, we can see that the distribution

of firms over the space of product characteristics is manifestly uneven: some areas are significantly more

densely populated with firms than others. Also, the network displays a pronounced community structure:

large groups of firms tend to cluster in certain areas of the network.

10Before HP’s data was published, Bloom, Schankerman and Van Reenen (2013) constructed cosine similarities to estimate
R&D spillovers. They used Compustat Segments data, which is based on NAICS/SIC industries. This dataset’s coverage of
Compustat is insu�cient to estimate my model (not enough firms/years available).

11See the following Bureau of Labor Statistics Guide.
12For example: DEU’s method to compute markups uses production function estimates for NAICS industries.
13The algorithm models the network nodes as particles, letting them dynamically arrange themselves on a bidimensional surface
as if they were subject to attractive and repulsive forces. One known shortcoming of this algorithm is that it is sensitive to
the initial configurations of the nodes, and it can have a hard time uncovering the cluster structure of large networks. To
mitigate this problem, and to make sure that the cluster structure of the network is properly displayed, I pre-arrange the
nodes using the OpenOrd algorithm (which was developed for this purpose) before running FR.
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Table 2: Demand Elasticities: Microeconometric Estimates (Untargeted) vs. GHL

Demand Elasticity
⇣

@qi

@pj
·
pj

qi

⌘

Market Firm i Firm j Micro Estimate GHL (text-based)

Auto Ford Ford -4.320 -5.197

Auto Ford General Motors 0.034 0.056

Auto Ford Toyota 0.007 0.017

Auto General Motors Ford 0.065 0.052

Auto General Motors General Motors -6.433 -4.685

Auto General Motors Toyota 0.008 0.005

Auto Toyota Ford 0.018 0.025

Auto Toyota General Motors 0.008 0.008

Auto Toyota Toyota -3.085 -4.851

Cereals Kellogg’s Kellogg’s -3.231 -1.770

Cereals Kellogg’s Quaker Oats 0.033 0.023

Cereals Quaker Oats Kellogg’s 0.046 0.031

Cereals Quaker Oats Quaker Oats -3.031 -1.941

Computers Apple Apple -11.979 -8.945

Computers Apple Dell 0.018 0.025

Computers Dell Apple 0.027 0.047

Computers Dell Dell -5.570 -5.110

What is surprising from the table is that the GHL estimates also match with striking accuracy the magnitudes
– not just for the own v/s cross price elasticities as a whole, but for individual firm pairs. It’s also crucial
to note that these demand elasticities are untargeted moments. All we used to calibrate ↵ was the inverse

cross-price demand elasticity between Kellogg’s and Quaker Oats (which provides no guarantee of being
able to match the corresponding demand elasticity, since the matrix of elasticities depends on the entire ⌃

matrix).

One feature of Table 2 that may makes it di�cult to evaluate model fit using a single summary statistic
(such as a correlation coe�cient) is that it combines own demand elasticities (which are negative and large
in absolute value) with cross-price demand elasticities (which are positive and small in absolute value);
the correlation coe�cient is extremely high (0.99) but this entirely due to the variation across own and
cross-demand elasticities.

To construct a single, extremely-stringent summary statistic of model fit, I perform the following analysis.
I take the log of the absolute value of each observation in the two right-most columns of Table 2. Then, I
residualize the resulting two series on a dummy variable takes value 1 for own price elasticities (i = j), as
well as on market fixed e↵ects. Only after these manipulations, I consider the correlation of the two resulting
series. The rationale for these manipulations is that we don’t want to “give any points” to the model for
matching the magnitude and sign of own and cross-price elasticities as a whole; we also don’t want to give
any points to the model for matching the variation at the market level (e.g. for nailing the average cross-price
elasticity in autos as opposed to cereals). In sum, we want to evaluate the model solely on its ability to
match firm-firm variation in elasticities within markets and within own/cross groups.

29
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Empirics
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Distribution of Product Market Centrality
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Total Surplus and its Distribution
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Deadweight Loss from Oligopoly
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● Private and foreign firms, entry and exit
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● Private and foreign firms, entry and exit
▸ Aggregation result: add competitive fringes of atomistic 

firms in the form of a representative firms. 
▸ Can be located using firm-sector similarity from FHP.

● Non-flat marginal cost

● Exclude “non-tradable” industries

● Bertrand

● Multi-product firms (using Compustat Segments)

● Input-Output Linkages (using Atalay et al. 2011 IO data)

Robustness & Extensions



Product Differentiation and Oligopoly: a Network Approach Bruno Pellegrino (Columbia Business School) 1

Bruno Pellegrino
Columbia GSB

A Tale of Two Networks:
Common Ownership and Product Market Rivalry

Florian Ederer
BU Questrom

London School of Economics
Fifth Economic Networks and Finance Conference



Product Differentiation and Oligopoly: a Network Approach Bruno Pellegrino (Columbia Business School) 38

● Definition: the degree to which two firms that compete in product 
and/or labor markets are owned by few, overlapping investors.
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● Definition: the degree to which two firms that compete in product 
and/or labor markets are owned by few, overlapping investors.

● The Common Ownership hypothesis (Rotemberg, 1984):
▸ Consider a standard oligopolistic market, but assume that 

instead of maximizing profits, firms maximize investors’ value.
▸ CO leads to softening of competition without any collusion.

● Rising Common Ownership (Gilje, Gormley & Levit 2020; Backus, 
Conlon & Sinkinson, 2021) à Huge policy/research interest:

▸ Consolidation in asset management industry is putting stock 
ownership in the hands of a few large institutional investors.

Common Ownership



Product Differentiation and Oligopoly: a Network Approach Bruno Pellegrino (Columbia Business School) 39

Research Question

What are the welfare implications 
of common ownership?
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Research Question

What are the welfare implications 
of common ownership?

à Depends on ownership as well!
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Common Ownership
● There are Z funds indexed by z = 1,2,…,Z. Fund z own shares 

siz in company i. Then fund z’s total income is:

      
           

Figure 1: Demand System Comparison
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Figure Notes: The figure shows a log-log plot of the demand curve estimated non-

parametrically by Baqaee and Farhi (2020a) (solid light green line), against a linear (GHL)

fit (dotted black line) and against an isoelastic (CES) fit (solid dark green line). Note that an

isoelastic curve becomes a straight line in a log-log plot. Baqaee and Farhi (2020a)’s model

demand curve is obtained from price-cost passthrough estimates by Amiti et al. (2019).

residual demand for firm j and thus a decrease in quantity qj , but this in turn implies an increase

in residual demand firm k and thus an increase in quantity qk.

This complementarity matches realistic features of economy-wide substitution patterns. For

example, our computed vector of cross-price derivatives for General Motors in 2018 includes several

negative elements (i.e., complements), including energy and consumer finance companies: higher

oil prices, loan rates, or insurance premia adversely a↵ect the residual demand for cars.

2.4 Ownership and the Firms’ Objective

There are Z investment funds which are owned by the representative agent and indexed by z. Vz,

the value of fund z, is the sum of the profits that they are entitled to based on their ownership

share in each company i

Vz
def
=

nX

i=1

siz ⇡i and
ZX

z=1

siz = 1 (2.22)

11
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siz in company i. Then fund z’s total income is:

● Firm i picks qi to maximize the share-weighted profits of its 
investors (Rotemberg 1984 – we shall relax this later):
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Common Ownership
● There are Z funds indexed by z = 1,2,…,Z. Fund z own shares 

siz in company i. Then fund z’s total income is:

● Firm i picks qi to maximize the share-weighted profits of its 
investors (Rotemberg 1984 – we shall relax this later):

Figure 2: Demand System Comparison
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Figure Notes: The figure shows a log-log plot of the demand curve estimated
non-parametrically by Baqaee and Farhi (2020) (solid light green line), against a
linear fit (dotted black line) and against an isoelastic (CES) fit (solid dark green
line). Note that an isoelastic curve becomes a straight line in a log-log plot. Baqaee
and Farhi (2020)’s model demand curve is obtained from price-cost passthrough
estimates by Amiti et al. (2019).

value functions, weighted by the investors’ ownership shares in all firms in the economy:

�i
def
=

ZX

z=1

siz Vz =
ZX

z=1

siz

IX

j=1

sjz⇡j =
IX

j=1

⇡j

ZX

z=1

sizsjz (12)

We assume that firms engage in Cournot competition and that the profit functions are
concave. Hence, to maximize Vi, firm i’s management sets the following derivative with
respect to qi equal to zero:

@�i

@qi
=

NX

j=1

s0isj ·
@⇡j

@qi

= s0isi

"
bi � ci � (2 + �i) qi � ↵

X

j 6=i

a0

iajqi

#
� ↵

X

j 6=i

s0isj · a0

iaj · qi

where
si

def
=

h
si1 si2 . . . siZ

i0
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residual demand for firm j and thus a decrease in quantity qj , but this in turn implies an increase

in residual demand firm k and thus an increase in quantity qk.

This complementarity matches realistic features of economy-wide substitution patterns. For

example, our computed vector of cross-price derivatives for General Motors in 2018 includes several

negative elements (i.e., complements), including energy and consumer finance companies: higher

oil prices, loan rates, or insurance premia adversely a↵ect the residual demand for cars.

2.4 Ownership and the Firms’ Objective

There are Z investment funds which are owned by the representative agent and indexed by z. Vz,

the value of fund z, is the sum of the profits that they are entitled to based on their ownership

share in each company i
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def
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● We can write i’s objective function in terms of profit weights:

                                                           
                                                              

             

Profit Weights

The common ownership weights ij are defined as

ij
def
=

s0isj
s0isi

which allows us to rewrite firm i’s objective function in the following way

�i / ⇡i +
X

j 6=i

ij⇡j. (13)

Our notation directly follows Backus et al. (2021) and Antón et al. (2020).3 We interpret ij

as the weight—due to common ownership—that each firm (or each manager) i’s objective
function assigns to the profits of other firms relative to its own profits and corresponds to
what Edgeworth (1881) termed the “coefficient of effective sympathy among firms.”

At this point it is worth discussing our assumption that the manager of firm i maximizes
�i. There is a long tradition in economics of weighting shareholder interests in the objective
function of the firm, including Drèze (1974), Grossman and Hart (1979), and Rotemberg
(1984). More recently, almost all of the common ownership literature has used the same
objective function for firms as in equation (13) with Azar (2020) and Antón et al. (2020)
providing microeconomic foundations for the manager’s maximization choice. However, this
assumption that firms (or managers) maximize the weighted portfolio profits of their in-
vestors differs from Azar and Vives (2021a). They instead assume that firms maximize the
weighted investor utilities. Firms are assumed to take into account that their quantities
affect the consumption choices of investors through the firm quantities’ influence on the ag-
gregate price index. For example, under this assumption airlines internalize that some of its
investors are also air travelers and setting higher quantities lowers the relative price of air
travel in the consumption bundle of these owner-consumers. This can give rise to strategic
complementarities between firms across industries and a pro-competitive effect of common
ownership.

In contrast, in our benchmark case firms ignore the impact of their quantity choices on
the consumption bundles of their investors. However, despite ignoring this channel strategic
complementarities between firms (and thus pro-competitive effects of common ownership)
can still arise in our setting. Rather than resulting from changes in the aggregate price index
and firms maximizing the indirect utility of the ultimate owners they arise from the network
structure as discussed in Section 2.3.1.

3López and Vives (2019) and Azar and Vives (2021a) use the same formulation but denote ij by �ij .

12
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• So the first thing to know is that with Compustat we are capturing

between 2/3 and 3/4 of the total value added in manufacturing and

services.

ij =

PZ
z=1 sizsjzPZ
z=1 sizsiz

⌘
r

HHIj

HHIi
· cos (si, sj)

2
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● We can write i’s objective function in terms of profit weights:

● Using institutional shareholding data (forms 13-F) we can 
compute all of the profit weights and perform counterfactuals.
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● We can write i’s objective function in terms of profit weights:

● Using institutional shareholding data (forms 13-F) we can 
compute all of the profit weights and perform counterfactuals.

● Equilibrium:

Profit Weights

The common ownership weights ij are defined as

ij
def
=

s0isj
s0isi

which allows us to rewrite firm i’s objective function in the following way

�i / ⇡i +
X

j 6=i

ij⇡j. (13)

Our notation directly follows Backus et al. (2021) and Antón et al. (2020).3 We interpret ij

as the weight—due to common ownership—that each firm (or each manager) i’s objective
function assigns to the profits of other firms relative to its own profits and corresponds to
what Edgeworth (1881) termed the “coefficient of effective sympathy among firms.”

At this point it is worth discussing our assumption that the manager of firm i maximizes
�i. There is a long tradition in economics of weighting shareholder interests in the objective
function of the firm, including Drèze (1974), Grossman and Hart (1979), and Rotemberg
(1984). More recently, almost all of the common ownership literature has used the same
objective function for firms as in equation (13) with Azar (2020) and Antón et al. (2020)
providing microeconomic foundations for the manager’s maximization choice. However, this
assumption that firms (or managers) maximize the weighted portfolio profits of their in-
vestors differs from Azar and Vives (2021a). They instead assume that firms maximize the
weighted investor utilities. Firms are assumed to take into account that their quantities
affect the consumption choices of investors through the firm quantities’ influence on the ag-
gregate price index. For example, under this assumption airlines internalize that some of its
investors are also air travelers and setting higher quantities lowers the relative price of air
travel in the consumption bundle of these owner-consumers. This can give rise to strategic
complementarities between firms across industries and a pro-competitive effect of common
ownership.

In contrast, in our benchmark case firms ignore the impact of their quantity choices on
the consumption bundles of their investors. However, despite ignoring this channel strategic
complementarities between firms (and thus pro-competitive effects of common ownership)
can still arise in our setting. Rather than resulting from changes in the aggregate price index
and firms maximizing the indirect utility of the ultimate owners they arise from the network
structure as discussed in Section 2.3.1.

3López and Vives (2019) and Azar and Vives (2021a) use the same formulation but denote ij by �ij .
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of the potential function ⌅(q):

q⌅
def
= argmax

q
⌅ (q) = (2I+�+⌃+K �⌃)�1 (b� c) . (2.32)

2.5 Market Structure and Ownership Counterfactuals

We estimate our theoretical model to analyze how total surplus, profits, and consumer surplus

depend on market structure, ownership allocations, and firm conduct. Our baseline assumption is

that firms compete as in an economy-wide Cournot oligopoly game in which the manager of each firm

imaximizes the objective function �i which results in the Cournot Common Ownership allocation in

equation (2.32). We now consider counterfactual scenarios in which firms make production decisions

with alternative objective functions. For example, rather than maximizing portfolio profits �i firms

maximize their own individual firm profits ⇡i as under standard Cournot competition. Each of

these counterfactuals, summarized in the set of equations in (2.33) and inversely ranked by their

degree of competitiveness, is the maximizer of a specific scalar quadratic function, which we call

potential following the nomenclature of Monderer and Shapley (1996).12 To continue the previous

example, the potential function  (q) is the objective function of the pseudo-planner problem for

the Cournot-Nash equilibrium allocation without common ownership.

Monopoly Potential : ⇧ (q) = q0 (b� c) �q0

✓
I+

1

2
�+⌃

◆
q

CCO Potential : ⌅ (q) = q0 (b� c) �q0

✓
I+

1

2
�+

1

2
⌃+

1

2
K �⌃

◆
q

Cournot Potential :  (q) = q0 (b� c) � q0

✓
I+

1

2
�+

1

2
⌃

◆
q

Total Surplus : W (q) = q0 (b� c) � 1

2
· q0 (I+�+⌃)q

(2.33)

We first consider Cournot competition which assumes away any common ownership e↵ects by

assuming that investors do not hold diversified portfolios.

Definition 2. The Cournot allocation q is defined as that in which all profit weights ij in K are

equal to 0 for i 6= j and equal to 1 for i = j:

q 
def
= argmax

q
 (q) = (2I+�+⌃)�1 (b� c) (2.34)

12For our theoretical analysis, we assume an interior solution for the closed-form expressions of q. For our empirical
analysis, we also compute a numerical solution with a non-negativity constraint on q. The non-negativity constraint
binds for very few firms and the solution is almost identical to the unconstrained solution (e.g., error < 0.1% for
the total surplus function).

15

of the potential function ⌅(q):

q⌅
def
= argmax

q
⌅ (q) = (2I+�+⌃+K �⌃)�1 (b� c) . (2.32)

2.5 Market Structure and Ownership Counterfactuals

We estimate our theoretical model to analyze how total surplus, profits, and consumer surplus

depend on market structure, ownership allocations, and firm conduct. Our baseline assumption is

that firms compete as in an economy-wide Cournot oligopoly game in which the manager of each firm

imaximizes the objective function �i which results in the Cournot Common Ownership allocation in

equation (2.32). We now consider counterfactual scenarios in which firms make production decisions

with alternative objective functions. For example, rather than maximizing portfolio profits �i firms

maximize their own individual firm profits ⇡i as under standard Cournot competition. Each of

these counterfactuals, summarized in the set of equations in (2.33) and inversely ranked by their

degree of competitiveness, is the maximizer of a specific scalar quadratic function, which we call
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We first consider Cournot competition which assumes away any common ownership e↵ects by

assuming that investors do not hold diversified portfolios.

Definition 2. The Cournot allocation q is defined as that in which all profit weights ij in K are

equal to 0 for i 6= j and equal to 1 for i = j:

q 
def
= argmax

q
 (q) = (2I+�+⌃)�1 (b� c) (2.34)

12For our theoretical analysis, we assume an interior solution for the closed-form expressions of q. For our empirical
analysis, we also compute a numerical solution with a non-negativity constraint on q. The non-negativity constraint
binds for very few firms and the solution is almost identical to the unconstrained solution (e.g., error < 0.1% for
the total surplus function).
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A Tale of Two Networks
Figure 2: Network Visualization

Figure Notes: The diagrams are two-dimensional representations of the network of product similarities (left panel)

computed by Hoberg and Phillips (2016) and of the network of ownership shares (right panel). Both networks are used

in the estimation of the model presented in Section 2. The data cover the universe of publicly-listed firms in 2004. Firm

pairs that have thicker links are closer in product market space and closer in ownership space, respectively. These distances

are computed in spaces that have approximately 61,000 and 3,100 dimensions, respectively. To plot these high-dimensional

objects over a plane, we apply the gravity algorithm of Fruchterman and Reingold (1991).

20

Product Market Similarity - A’A
based on 10-K (Hoberg & Phillips, 2016)

Common Ownership Weights – K
based on 13-F data (Backus et al. 2021)
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Effect of CO on Profits and Consumer Surplus
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● A new GE theory of oligopoly with hedonic demand.

● Estimated for Compustat using 10-K product similarities.

● Distribution of markups is jointly determined by productivity 
and product market centrality.
▸ Both have undergone significant changes

● Rising Oligopoly Power
▸ increasing deadweight loss 
▸ lower consumer surplus share.

☞ I share the data! (elasticities, centrality, productivity…)

Take-aways
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thank you
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Product Market Centrality

q = (2I+⌃)�1 (b� c)

=
1

2

2

6664

1� �1 0 · · · 0
0 1� �2 · · · 0
...

...
. . .

...
0 0 · · · 1� �n

3

7775
(b� c)

1
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TABLE 1
10-K-Based Classifications of Firms in Business Services (SIC-3 5 737)

Submarket 1: Entertainment (Sample Focal Firm: Wanderlust Interactive)

43 rivals: Maxis, Piranha Interactive Publishing, Brilliant Digital Entertainment, Midway
Games, Take Two Interactive Software, THQ, 3DO, New Frontier Media, . . .

SIC codes of rivals: computer programming and data processing [SIC-35 737] (24 rivals),
motion picture production and allied services [SIC-3 5 781] (4 rivals), miscellaneous
other (13 rivals)

Core words: entertainment (42), video (42), television (38), royalties (35), internet (34),
content (33), creative (31), promotional (31), copyright (31), game (30), sound (29),
publishing (29), . . .

Submarket 2: Medical Services (Sample Focal Firm: Quadramed Corp.)

66 rivals: IDX Systems, Medicus Systems, Hpr, Simione Central Holdings, National Wireless
Holdings, HCIA, Apache Medical Systems, . . .

SIC codes of rivals: computer programming and data processing [SIC-35 737] (45 rivals),
insurance agents, brokers, and service [SIC-3 5 641] (5 rivals), miscellaneous health
services [SIC-3 5 809] (4 rivals), management and public relations services [SIC-3 5
874] (3 rivals), miscellaneous other (9 rivals)

Core words: client (59), database (54), solution (49), patient (47), copyright (47), secret
(47), physician (47), hospital (46), health care (46), server (45), resource (44), func-
tionality (44), billing (44), . . .

Submarket 3: Information Transmission (Sample Focal Firm: FAXSAV)

259 rivals: Omtool Ltd., Concentric Network, Premiere Technologies, International Tele-
communication Data Systems, IDT Corp., Axent Technologies, Solopoint, Precision
Systems, Netrix Corp., . . .

SIC codes of rivals: computer programming and data processing [SIC-3 5 737] (112 ri-
vals), communications equipment [SIC-35 366] (45 rivals), telephone communications
[SIC-3 5 481] (38 rivals), computer and office equipment [SIC-3 5 357] (29 rivals),
communications services, other [SIC-35 489] (7 rivals), miscellaneous business services
[SIC-3 5 738] (7 rivals), miscellaneous other (15 rivals)

Core words: internet (236), telecommunications (211), interface (194), communication
(188), solution (187), platform (184), architecture (182), call (177), infrastructure
(173), voice (173), functionality (173), server (173), . . .

Submarket 4: Software (Sample Focal Firm: Intuit)

52 rivals: Netscape Communications, Mysoftware, Quarterdeck, Software Publishing Corp.,
GO2Net, Meridian Data, Macromedia, Microsoft, CE Software Holdings, . . .

SIC codes of rivals: computer programming and data processing [SIC-35 737] (48 rivals),
miscellaneous other (4 rivals)

Core words: internet (52), functionality (48), copyright (48), Microsoft (48), Windows
(46), solution (45), ease (44), secret (43), difficulties (41), version (41), infringement
(41), database (41)

Submarket 5: Corporate Data Management and Computing
Solutions (Sample Focal Firm: Hyperion)

207 rivals: Oracle Corp., Fourth Shift Corp., Applix, Timeline, Platinum Technology,
Harbinger Corp., Santa Cruz Operation, Edify Corp., Banyan Systems, . . .

SIC codes of rivals: computer programming and data processing [SIC-3 5 737] (174 ri-
vals), computer and office equipment [SIC-3 5 357] (22 rivals), communications
equipment [SIC-3 5 366] (2 rivals), miscellaneous other (15 rivals)

Core words: server (196), client (194), solution (193), enterprise (186), functionality
(185), Windows (183), internet (182), copyright (180), Microsoft (177), database (174),
architecture (171), interface (168)

This content downloaded from 131.179.022.235 on April 19, 2018 19:41:57 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).
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1. Allows to write demand in terms of cosine similarity
2. Already standard in literature (see Syverson 2019 JEP review)
3. Data is begging you to use it

Linear Demand
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Figure 4: Demand Elasticities: GHL vs. Microeconometric Estimates (Untargeted)
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Figure Notes: the scatter plot above illustrates GHL’s ability to fit microeconometric

estimates of demand elasticities. Each observation is a firm-firm pair and the label

represents the relevant market. On both axes, the variable being plotted is the log-

module of the demand elasticity
⇣
log

��� @qi@pj
· pjqi

���
⌘
, residualized on the “own/cross” dummy

variable and market fixed e↵ects. The GHL estimate is plotted on the vertical axis.

The corresponding microeconometric estimate is plotted on the horizontal axis, and is

a median of product-level demand elasticity for un-diversified firms.

4.4. Markups

GHL demand elasticities closely approximate (without directly targeting) the traditional IO micro estimates
of demand elasticity and markups. One limitation, of course, is that such demand-based estimates are only
available for a limited of industries. Recently De Loecker, Eeckhout and Unger (2020, DEU) were able
to estimate markups for US public corporations using a supply-side approach that involves estimating the
firms’ production technology. It is thus natural to ask how the distribution of markups generated by the
GHL model compare to those estimated by DEU.

For the baseline model with flat marginal cost, this comparison is omitted, for the trivial reason that, under
the assumption of constant returns to the variable input, the markups implied by my baseline model coincide
exactly, by construction, with those of DEU: both are equal to Revenues/COGS.

However, an important contribution of DEU is to be able to relax this assumption - by doing so they are able
to obtain alternative measures of markups. I do so in a model extension that I present in 6.1. In the same
subsection, I show that, even after relaxing the flat marginal cost assumption, my extended model generates
markups that correlate extremely closely – both in the cross section and over time – with DEU’s.

30



Product Differentiation and Oligopoly: a Network Approach Bruno Pellegrino (Columbia Business School) 31

Markups: Time Series
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Profits, Potential and Welfare

Special Case: the case where the cost function is quadratic is of particular interest:

hi = fi + c
0

i
qi +

�i

2
q
2

i
thus ci = c

0

i
+ �iqi; (2.21)

as it yields closed-form solutions, and it is the one that we take to the data in Section 5.

Firm i maximizes its total profits ⇡i, defined as follows:

⇡i (q)
def
= pi (q) · qi � hi (q)

= qibi � q
2

i
�

X

j 6=i

�ijqiqj � hi

Firms compete à la Cournot: each firm i strategically chooses its output volume qi by taking as given the
output of all other firms. By taking the profit vector as a payo↵ function and the vector of quantities
produced q as a strategy profile, I have implicitly defined a network game (Ballester, Calvó-Armengol and
Zenou, 2006, henceforth BCZ). The reason is that the matrix ⌃ can be conceptualized as the adjacency
matrix of a weighted network: in this specific instance, it is the network of product market rivalries that
exists among firms, based on the substitutability of their products.

2.3. Equilibrium

Network games belong to a larger class of games known as “potential games” (Monderer and Shapley, 1996):
the key feature of potential games is that they can be described by a scalar function � (q), which we call
the game’s potential. The potential function can be thought of, intuitively, as the objective function of the
pseudo-planner problem that is solved by the Nash equilibrium allocation. The potential function is shown
below, together with the aggregate profit function ⇧ (q) and the aggregate welfare function W (q):

Aggregate Profit : ⇧ (q) = q
0
b � q

0 (I+⌃)q �H (q)

Cournot Potential : � (q) = q
0
b�

1

2
· q

0 (2I+⌃)q�H (q)

Total Surplus : W (q) = q
0
b�

1

2
· q

0 (I+⌃)q�H (q)

(2.22)

The three functions in equation (2.23) are visually similar to each other; they only di↵er by the scalar weight
applied to the quadratic terms. The Cournot potential � is somewhat of a hybrid between the aggregate
profit ⇧ and the total surplus W : the diagonal entries of the quadratic term are the same as the aggregate
profit function, while the o↵-diagonal terms are the same as the aggregate surplus function. By maximizing
the potential � (q), we find the Cournot-Nash equilibrium. I shall assume all these three functions are
concave. In the special case where the cost function is quadratic, these three functions are also quadratic:

⇧ (q) = q
0 �
b� c

0
�

�
1

2
· q

0 (2I+�+2⌃)q� F

� (q) = q
0 �
b� c

0
�

�
1

2
· q

0 (2I+�+⌃)q� F

W (q) = q
0 �
b� c

0
�

�
1

2
· q

0 (I+�+⌃)q� F

(2.23)

where �
def
=

2

6664

�1 0 · · · 0
0 �2 · · · 0
...

...
. . .

...
0 0 · · · �n

3

7775
and F

def
=

nX

i=1

fi (2.24)

10
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● Compustat: Revenues (piqi), COGS (TVCi), SG&A (fi).
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● Assume δi=0 (later relaxed). Only one free parameter: α.

● Proposition: ∂logpi/∂logqj is observed for firm pair (K,Q):

                                                                 

Identification

What these two assumptions mean, intuitively, is that word frequencies in 10-K product descriptions (vi)
can proxy for product characteristics loadings (ai). This is obviously a strong assumption, and one that
needs to be validated empirically. However, it has powerful implications for identification.

Proposition 11. Assumptions 1 and 2 imply that a
0
i
aj ⌘ cosHP

ij
.

Proof. Because there are as many words as common characteristics (m), we can re-label words so that
ai = viCi (word 1 corresponds to characteristic 1, word 2 corresponds to characteristic 2 etc...). Because
|ai| = 1 by construction, it must be that Ci = kvik

�1. Thus, equation (3.2) simplifies to a
0
i
aj .

We must clarify a crucial aspect of these set of assumptions: only common characteristics are being mapped
to the vocabulary of Hoberg and Phillips. The idiosyncratic characteristics are instead assumed to be unob-

served. This has important implications for the empirics. The presence of the idiosyncratic characteristics
adds a degree of freedom to the demand system – the parameter ↵ – which allows to calibrate the overall
magnitude of the cross-price elasticities.

Having identified A
0
A, the matrix ⌃ is simply obtained using equation 2.15.. Finally, I identify the demand

intercept bi using equation (2.26):
b = (2I+�+⌃)q+ c

0 (3.6)

or, in the presence of a representative competitive firm:

b = (I+G+�+⌃)q+ c
0 (3.7)

The last step required to take the model to the data is to to identify the scalar parameter ↵, which controls the
elasticity of substitution among products. My strategy, for the baseline model, is to benchmark GHL against
well-known demand estimation studies (Berry et al., 1995; Nevo, 2001; Goeree, 2008). All of these studies
utilize the assumption that marginal cost is exogenous/flat. As a consequence, I will use this assumption as
well for the baseline model (and will later relax it in Section E).

Assumption 3. The marginal cost function is flat – that is, ci ⌘ c
0

i
for all firms i = 1, 2, ..., n.

Conditional on this assumption, I will next show that we can immediately identify ↵, provided that we can
observe the inverse cross-price demand elasticities for at least a product pair.:

Proposition 12. Suppose that the inverse cross-price demand elasticity "ij =
@ log pi

@ log qj
is observed for some firm

pair (k,q). Then, ↵ is identified as the following function of observables:

↵ = �
"kq · pk qk + "qk · pq qq

2 · coshpkq ·
p
pkqk � TVCk ·

p
pqqq � TVCq

(3.8)

Proof. Appendix G.

Luckily, as hinted in 3.4, there exists a pair of firms for which we are able to obtain an estimate of the
inverse cross-price elasticities from the previous literature: the firms in question are Kellogg’s and Quaker
Oats (hence the K and Q subscripts), and the corresponding inverse elasticities can be obtained by inverting
the matrix of demand elasticities estimated by Nevo (2001) in his landmark study of ready-to-eat cereals.

By applying equation (3.8), I obtain a value of ↵ equal to 0.12. Assumption 3 is relaxed in the extended
model, which is presented in subsection (6.1).
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● Compustat: Revenues (piqi), COGS (TVCi), SG&A (fi).

● Assume δi=0 (later relaxed). Only one free parameter: α.

● Proposition: ∂logpi/∂logqj is observed for firm pair (K,Q):

● Every other object is identified in closed form (correct units).

Identification

What these two assumptions mean, intuitively, is that word frequencies in 10-K product descriptions (vi)
can proxy for product characteristics loadings (ai). This is obviously a strong assumption, and one that
needs to be validated empirically. However, it has powerful implications for identification.

Proposition 11. Assumptions 1 and 2 imply that a
0
i
aj ⌘ cosHP

ij
.

Proof. Because there are as many words as common characteristics (m), we can re-label words so that
ai = viCi (word 1 corresponds to characteristic 1, word 2 corresponds to characteristic 2 etc...). Because
|ai| = 1 by construction, it must be that Ci = kvik

�1. Thus, equation (3.2) simplifies to a
0
i
aj .
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Having identified A
0
A, the matrix ⌃ is simply obtained using equation 2.15.. Finally, I identify the demand

intercept bi using equation (2.26):
b = (2I+�+⌃)q+ c

0 (3.6)

or, in the presence of a representative competitive firm:

b = (I+G+�+⌃)q+ c
0 (3.7)
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Assumption 3. The marginal cost function is flat – that is, ci ⌘ c
0

i
for all firms i = 1, 2, ..., n.
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Proposition 12. Suppose that the inverse cross-price demand elasticity "ij =
@ log pi

@ log qj
is observed for some firm

pair (k,q). Then, ↵ is identified as the following function of observables:

↵ = �
"kq · pk qk + "qk · pq qq

2 · coshpkq ·
p
pkqk � TVCk ·

p
pqqq � TVCq

(3.8)

Proof. Appendix G.

Luckily, as hinted in 3.4, there exists a pair of firms for which we are able to obtain an estimate of the
inverse cross-price elasticities from the previous literature: the firms in question are Kellogg’s and Quaker
Oats (hence the K and Q subscripts), and the corresponding inverse elasticities can be obtained by inverting
the matrix of demand elasticities estimated by Nevo (2001) in his landmark study of ready-to-eat cereals.

By applying equation (3.8), I obtain a value of ↵ equal to 0.12. Assumption 3 is relaxed in the extended
model, which is presented in subsection (6.1).
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Identification

qi =
p
⇡i

1

qi =
p
⇡i

ci =
TVCi

qi

1

qi =
p
⇡i

ci =
TVCi

qi

b = (2I+⌃)q+ c

1
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The paper takes into account entry and exit in two ways.
● Atomistic Firms with quadratic cost and Pareto-distributed 

productivity that enter/exit endogenously, modelled through a 
representative firm. New aggregation result that allows for 
intensive and extensive margin. Results are virtually unchanged 
under this extension.

● Granular Firms have a choke price: when the social planner 
forces firms to price at marginal cost (Perfect Competition) some 
exit. Fewer firms compete much more aggressively (TS ↑)

Entry and Exit
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Adding a representative competitive firm

yielding the following Nash equilibrium allocation:

q =
�
(I+ 11

0) �
⇥
(I+⌃) (I� F)0

⇤ �1 ⇥
(I� F)b� c

0
⇤

(2.74)

The empirical implementation of the model is presented in section F.

2.10. Adding a competitive fringe of atomistic firms

Next, I show how to expand the model to include a continuum of atomistic firms that behave competitively
and can enter and exit endogenously. This extension of the model allows me to accomplish two things: 1)
incorporate firms for whom we do not observe product similarity data – that is, foreign and private firms;
2) it allows to incorporate entry and exit in an otherwise static model. The idea is that we can model
unobserved companies as atomistic firms.

The key to tractably integrating these atomistic firms in the model is an aggregation result. I describe these
atomistic firms through a productivity distribution: the set of active atomistic firms is then characterized
by a productivity cut-o↵ value, in the style of Hopenhayn (1992).

Next, I show that these atomistic companies can be aggregated into a representative firm: variations in the
size of the representative firm reflect the intensive margin of production as well as the extensive margin (the
entry/exit of the atomistic firms). I index this representative firm i = n+ 1, e↵ectively adding a row and a
column to the matrices A0

A and � and adding one dimension to the vector b.

Proposition 9. Assume that there is a continuum of potential entrants that are indexed by a productivity
parameter ⇣ 2

�
⇣,1

�
, with ⇣ > 0, and that produce a homogeneous good using the following quadratic cost

function:

h (⇣) =
1

2⇣
· q

2 (⇣) (2.75)

Assume also that the firms face cost of entry equal to one unit of labor and that the probability density of
type-⇣ potential entrants is given by

pdf (⇣) =
� � 1

⇣�+1
(2.76)

implying that ⇣ follows a Pareto distribution with shape parameter � and scale parameter ⇣
def
= [(� � 1) /�]

1
� .9

Then, as the parameter � converges down to 1, the cost function of the corresponding aggregate representative
firm is approximated by

hn+1 =
q
2

n+1

2
(2.77)

where and hn+1 and qn+1 are, respectively, the labor input and the output of the representative firm, and the
productivity cuto↵ for entry converges to ⇣min = 1

qn+1
.

Proof. See Appendix H.

Because employment and revenues are proportional to ⇣, it follows that, if the assumptions above are re-
spected, both the revenue and employment distribution of firms also approximate a Pareto distribution with
shape parameter � = 1, sometimes called a Zipf Law.

Although this might look like a knife-edge assumption, it is not. It is a well-documented empirical regularity
that the size distribution of firms closely approximates a Pareto distribution with shape parameter � = 1.

9While the revenue and employment distribution of US firms approximates a Pareto Distribution with scale parameter equal
to one (a Zipf Law), this distribution has the undesirable property that its mean (and therefore qn+1 and hn+1) grows
unboundedly as � ! 1+. This particular choice of the scale parameter ensures that qn+1 and hn+1 integrate to a finite
number as � ! 1+.
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Input-Output Linkages

Proof. Follows trivially from the fact that ij only appears in the equilibrium allocation (2.65) multiplied
by �ij , which is proportional to the cosine similarity a

0
i
aj .

2.9. Adding an Input-Output Network

In this subsection, I present yet another extension of the model, where I allow firms to be vertically related:
that is, a firm may use another firm’s output as input. To make this extension tractable, I shall make the
typical assumption that firms behave as price-takers in input markets, and that firms combine labor and
intermediate inputs using a Leontief production function.

Let us start by separating, in terms of notation, the output of firm j into the component that is sold to final
consumers – q

c
j
– from that which is sold to intermediate producer i � q

i
ij
. The total intermediate sales of

firm j aren denoted by q
i
j
. We can stack final and intermediate output sold into two n�dimensional vectors

q
c and q

i and the total sales are denoted by q = q
c + q

i. The Leontief technology implies that there exists
a matrix F, whose (i, j) entry is the number of units of j good that are required to manufacture a unit of i
good. Thus intermediate and final output sold is related to total output through the matrix F:

q
i = F

0
q and q

c = (I� F)0 q (2.68)

The consumer side is unchanged, except that the inverse demand of the final consumer depends on the final
sales qc instead of total sales q:

p = b� (I+⌃)qc (2.69)

As before, producing a unit of good i requires c
0

i
units of labor (assume constant marginal returns). The

vector of firm profits is thus given by:

⇡ = diag (q)
�
p� c

0
� Fp

�
� f (2.70)

where as before f is the vector of fixed costs (paid in labor), not to be confused with the matrix F. The
aggregate profit and welfare functions are

⇧ (q) = q
0(I� F)b� q

0 (I�F) (I+⌃) (I� F)0 q� q
0
c
0
� F (2.71)

W (q) = q
0(I� F)b�

1

2
· q

0 (I�F) (I+⌃) (I� F)0 q� q
0
c
0
� F (2.72)

The system of first-order conditions for profit maximization is:

0 = (I� F)p�
�
(I+ 11

0) �
⇥
(I+⌃) (I� F)0

⇤ 
q� c

0 (2.73)

yielding the following Nash equilibrium allocation:

q =
�
(I+ 11

0) �
⇥
(I+⌃) (I� F)0

⇤ �1 ⇥
(I� F)b� c

0
⇤

(2.74)

The empirical implementation of the model is presented in section F.
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Total Surplus and its Breakdown (input-output)
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Deadweight Loss (Input-Output)
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Multi-Product Firms and Mergers

fixed. That is, the social planner maximizes aggregate surplus subject to the constraint of using no more
labor than in the observed Cournot equilibrium.

Definition 10. I define the resource-e�cient counterfactual qH as the solution to the following constrained
maximization problem:

q
H def

= argmax
q�0

W (q) s.t. H (q) = H
�
q
�
�

(2.57)

Setting up the Lagrangian and using (1� µ) as the Lagrange multiplier, we find that, conditioning on the
set of active firms (q > 0) the resource-e�cient counterfactual takes the form:

q
H = (I+⌃)�1 (b� µc) if q

H
> 0 (2.58)

where µ solves:
H

�
q
H (µ)

�
= H

�
q
�
�

(2.59)

The Lagrange multiplier term µ turns out to be the common markup charged by all firms in the resource-
e�cient counterfactual.

Proposition 6. The Resource-e�cient counterfactual qH equalizes markups across active firms.

Proof. Let all firms price at a constant markup µ over marginal cost:

pi = µci (2.60)

expanding the expression for the equilibrium price we have:

b� (I+⌃)q = µc (2.61)

rearranging the equation above we obtain (2.58).

Because this counterfactual uses the same amount of labor as the observed equilibrium, by comparing welfare
in this allocation to the first-best we can e↵ectively break down the deadweight loss into two components –
one linked to misallocation, the other linked to labor suppression. We can also interpret this counterfactual
as the deadweight loss in an alternative model where the supply of labor is completely inelastic. Notice
that when this allocation is not constrained by the labor supply (the Lagrange multiplier 1 � µ is zero),
the common markup is one (firms price at marginal cost) and the resource-e�cient allocation coincides with
perfect competition.

2.8. Multi-product Firms, Collusion and M&A

Next, I generalize the model to accommodate multi-product firms and show how to perform counterfactuals
where firm boundaries are altered.

Suppose now that i indicates product lines, and firms are denoted by z = 1, 2, ..., Z. We thus define an n⇥Z

ownership matrix O, whose (i, z) entry is equal to one if firm z owns product line i. Each firm z maximizes
$z - the sum of the profits from all product lines:

$z =
nX

i=1

oiz⇡i (2.62)

We next derive the equilibrium of the multi-product Cournot model:

18

Company z maximizes the sum of profits over all product lines  i 
where oiz =1 if company z produces product i :Proposition 7. The multi-product Nash-Cournot equilibrium quantity vector maximizes the following modified

potential function:

� (q) = q
0
b�

1

2
q
0 (2I+⌃+K �⌃)q�H (q) (2.63)

where K is the co-ownership matrix, defined as follows:

K ⌘

2

6664

11 21 · · · 1n

12 22 · · · 2n

...
...

. . .
...

n1 n2 · · · nn

3

7775
def
= O

0
O (2.64)

and the operator (�) is the Hadamard (entry-by-entry) product. The solution satisfies

q
� = (2I+⌃+K �⌃)�1

⇥
b� c

�
q
�
�⇤

(2.65)

and with quadratic cost function it is equal to:

q
� = (2I+�+⌃+K �⌃)�1

�
b� c

0
�

(2.66)

Proof. Appendix H.

The symmetric matrix K has a simple structure and a straightforward economic interpretation: its (i, j)
entry is equal to one if product lines i and j are owned by the same firm; otherwise, it is equal to zero .

The multi-product extension of the model can be used to perform counterfactuals on firm boundaries, includ-
ing mergers, acquisitions, break-ups and divestures. When it comes to modeling mergers and collusion, the
I.O. literature has used multiple approaches. Following Baker and Bresnahan (1985), we can model mergers
and collusion interchangeably as coordinated pricing. That is, the merger or the collusion does not alter the
product range o↵ered by the merging/colluding enterprises; instead, a single agent determines the output
of the merging firms to maximize the joint profits. Then, even in a single-product setting (ij = 0 8 i, j),
we can simulate a merger or a collusion between a subset J of the set of firms by re-setting to one the
diagonal entries of K that correspond to the elements of J ⇥ J . It is easily verified that when all firms are
merged (ij = 1 8 i, j), the potential function � (q) converges to the aggregate profit function ⇧ (q), and the
equilibrium allocation converges to the Monopoly counterfactual (equation 2.54).

More in general, to simulate a more complex counterfactual, all we need to do is to update the matrix K to
reflect the updated firm boundaries. Consider the following illustrative example.

Example. Firm z1 produces products 1 and 2, while firm z2 produces product 3. This implies that 12 =
21 = 1 and 13 = 31 = 23 = 23 = 0. If firm z1 sells product line 2 to firm z2, the matrix K must to be
updated so that 12 = 12 = 13 = 31 = 0 and 23 = 23 = 1.

An interesting question that we can ask is whether there is a way to identify, ex-ante, mergers that are
unlikely to produce significant consumer welfare harm. The FTC-DOJ horizontal merger highlight the pre-
and post-merger Herfindahl Indices in the relevant industry. It is possible to formally prove that in this
model, where there are no formal industry boundaries, cosine similarities can fulfill a similar role.

Proposition 8. The equilibrium allocation is una↵ected by co-ownership of products with low cosine similarity.
Formally, consider two identical economies that only di↵er by their co-ownership matrices K

(1) and K
(2).

Let q(1) and q
(2) be their respective Cournot-Nash equilibria. If

a
0
i
aj ⇡ 0 for all (i, j) such that (1)

ij
6= 

(2)

ij
(2.67)

then q
(1)

⇡ q
(2).
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where K is the co-ownership matrix, defined as follows:

K ⌘

2

6664

11 21 · · · 1n

12 22 · · · 2n

...
...

. . .
...

n1 n2 · · · nn

3

7775
def
= O

0
O (2.64)

and the operator (�) is the Hadamard (entry-by-entry) product. The solution satisfies

q
� = (2I+⌃+K �⌃)�1

⇥
b� c

�
q
�
�⇤

(2.65)

and with quadratic cost function it is equal to:

q
� = (2I+�+⌃+K �⌃)�1

�
b� c

0
�

(2.66)

Proof. Appendix H.

The symmetric matrix K has a simple structure and a straightforward economic interpretation: its (i, j)
entry is equal to one if product lines i and j are owned by the same firm; otherwise, it is equal to zero .

The multi-product extension of the model can be used to perform counterfactuals on firm boundaries, includ-
ing mergers, acquisitions, break-ups and divestures. When it comes to modeling mergers and collusion, the
I.O. literature has used multiple approaches. Following Baker and Bresnahan (1985), we can model mergers
and collusion interchangeably as coordinated pricing. That is, the merger or the collusion does not alter the
product range o↵ered by the merging/colluding enterprises; instead, a single agent determines the output
of the merging firms to maximize the joint profits. Then, even in a single-product setting (ij = 0 8 i, j),
we can simulate a merger or a collusion between a subset J of the set of firms by re-setting to one the
diagonal entries of K that correspond to the elements of J ⇥ J . It is easily verified that when all firms are
merged (ij = 1 8 i, j), the potential function � (q) converges to the aggregate profit function ⇧ (q), and the
equilibrium allocation converges to the Monopoly counterfactual (equation 2.54).

More in general, to simulate a more complex counterfactual, all we need to do is to update the matrix K to
reflect the updated firm boundaries. Consider the following illustrative example.

Example. Firm z1 produces products 1 and 2, while firm z2 produces product 3. This implies that 12 =
21 = 1 and 13 = 31 = 23 = 23 = 0. If firm z1 sells product line 2 to firm z2, the matrix K must to be
updated so that 12 = 12 = 13 = 31 = 0 and 23 = 23 = 1.

An interesting question that we can ask is whether there is a way to identify, ex-ante, mergers that are
unlikely to produce significant consumer welfare harm. The FTC-DOJ horizontal merger highlight the pre-
and post-merger Herfindahl Indices in the relevant industry. It is possible to formally prove that in this
model, where there are no formal industry boundaries, cosine similarities can fulfill a similar role.

Proposition 8. The equilibrium allocation is una↵ected by co-ownership of products with low cosine similarity.
Formally, consider two identical economies that only di↵er by their co-ownership matrices K

(1) and K
(2).

Let q(1) and q
(2) be their respective Cournot-Nash equilibria. If

a
0
i
aj ⇡ 0 for all (i, j) such that (1)

ij
6= 

(2)

ij
(2.67)

then q
(1)

⇡ q
(2).

19



Product Differentiation and Oligopoly: a Network Approach Bruno Pellegrino (Columbia Business School) 42

Construction of Product Cosine Similarities
Company z maximizes the sum of profits over all product lines  i 
where [O]iz = 1 if company z produces product i :

6.3. Non-Tradable Sectors

Another limitation of the empirical implementation of my model is that it includes sectors or industries
that are non-tradable beyond narrow geographies. Consider grocery stores for example: grocery stores in
New York do not compete with grocery stores in Los Angeles. The same applies to dialysis clinics, a sector
that has seen significant consolidation and has been the object of much empirical research (Cutler et al.,
2012; Eliason et al., 2020; Wollmann, 2020). The model, as implemented thus far, does not distinguish
the geographic nature of competition in these sectors. Again, we worry that the empirical results that we
obtained thus far may be an artifact of the inclusion of non-tradable sectors.

To address this concern, I implement yet another robustness check. I sort broad ISIC v.3.1 into tradable
and non-tradable, and estimate yet another version of the model where non-tradable sectors are excluded.

Key welfare metrics from this alternative model are presented in Appendix 6.3, together with the list of ISIC
v3.1 macro-sectors, classified into tradable and non-tradable. Over the sample period, the profit share of
surplus increases from 18% (in 1996) to 25.4% (in 2019), while the deadweight loss increases from 9.9% to
14%.

6.4. Multi-Product Firms

Next, I relax the assumption that all firms in the model are single-product firms, thus operationalizing the
multi-product extension of subsection 2.8. To achieve this, I utilize Compustat segments data, which is
available starting from 1999 (shortens the sample by two years), and which allows to break down the sales
of a large subset of the firms in the Compustat sample by business segments. Each of these segments is
associated with a SIC code. I define a product as a subset of segments associated with the same 4-digit SIC
code.

Firms that report sales across multiple segments with distinct SIC codes are modeled as multi-product firms.
I break down their operations among products using their Compustat segments sales share, and use the
association between products and firms to form the co-owernship matrix K.

In order to implement this extended model, I also need product cosine similarities among products (as
opposed to firms). I construct a cosine similarity matrix for products/segment following previous work by
Hoberg and Phillips (2018), who do so by combining firm-level cosine similarities and segment SIC codes.
The step-by-step method is as follows.

We generically denote SIC codes by the subscript S. There are N SIC codes. Both firms and SIC codes are
sets of segments, and we describe segment i belonging to firm z or being associated with SIC code S using
the inclusion operator (e.g. i 2 z , i 2 S). Next, we define the following matrices. The Z ⇥ N matrix S

contains firm i’s shares of total sales in a given SIC code S (obtained from segments data).

[S]
zS = z

0s share of SIC code S sales (6.8)

The columns of this matrix are normalized by a constant (see below). The n⇥N matrix Q describes instead
the mapping from segments to SIC codes:

[Q]
iS =

(
1 if i 2 S

0 if i /2 S
(6.9)

Let us denote the firm-firm similarity matrix (as computed by HP16) by (A0
A)

F
. The product-product

cosine similarity (A0
A)

P
is then constructed as:

(A0
A)p =

1

2
[O (A0

A)f O
0 +Q

0
S
0 (A0

A)f SQ] (6.10)
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Total Surplus and breakdown (Multi-Product)
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Deadweight Loss (Multi-Product)
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Bertrand Equilibrium (flat marginal cost)

à la Bertrand (by setting prices). The model remains tractable as long as we assume that firms face an
exogenous marginal cost.

To solve the Bertrand game, it helps to define D, be the diagonal matrix that contains the diagonal entries
of (I+⌃)�1.

Proposition 14. The Bertrand-Nash equilibrium (with exogenous marginal cost c) is q
 – the maximizer of

the Bertrand potential  (·):

q
 def

= argmax
q

 (q) (6.13)

where the Bertrand potential  is defined as:

 
def
= q

0 (b� c)�
1

2
q
0 �
I+ D

�1 +⌃
�
q (6.14)

the Bertrand equilibrium allocation is:

q
 =

�
I+ D

�1 +⌃
��1

(b� c) (6.15)

Proof. Appendix H.

Because D
�1 is a diagonal matrix whose diagonal entries are between zero and one, the Bertrand-Nash

allocation is in some sense “closer” to the perfect competition benchmark (2.53) than Cournot-Nash (2.27) -
thus, consistent with the previous literature, Bertrand is a more “intense” form of competition than Cournot.
In Appendix F, I juxtapose the empirical results from the Cournot and the Bertrand version of the model:
empirically, the di↵erences between Cournot and Bertrand appear to be minimal. That is, it appears in a
multi-industry framework with a large number of firms and significant product di↵erentiation, the conduct
assumption appears to have much less of an impact on welfare than in a standard industry-level models of
oligopoly: this is per se an interesting finding.

6.7. Labor Supply Elasticity

Next, I discuss how my empirical results change if I make a di↵erent assumption about labor supply function.
To understand the directional e↵ect of relaxing the assumption of linear labor disutility (which corresponds
to a perfectly-elastic labor supply), let us consider the polar opposite – that is, the labor supply being fixed.

By definition, profit as a share of total surplus would be unchanged. The deadweight loss would instead
become the total surplus di↵erence between the Cournot equilibrium and the Resource-E�cient counterfac-
tual, which we previously defined in Subsection 2.7. As can be seen in Table 3, this welfare di↵erence is
smaller than the deadweight loss. Intuitively, this is because the labor supply (by definition) cannot respond
to the removal of the oligopolistic distortions.

The di↵erence in the compute this alternative measure of the deadweight loss (the percentage di↵erence
in total surplus between Cournot and Resource E�cient) over the period 1996-2019. I find that my core
empirical results carry through: the level of this“alternative”deadweight loss is 5.2% in 1997, and it increases
to 7.9% by 2017. In other words, the level of the deadweight loss is lower if we assume a fixed labor supply
(as should be expected), but it increases more sharply (by half) over the 20-year period.

6.8. Complement Goods

In this subsection, I discuss how the model handles complement products. I begin by pointing out that,
because the matrix ⌃ is non-negative by construction, the marginal utility from one unit of product j is
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Deadweight Loss (Cournot v/s Bertrand)

F.4. Comparison of Cournot Oligopoly and Bertrand Oligopoly

Figures 20 and 21 compare, respectively, the profit share (of total surplus) and the deadweight loss of the
baseline Cournot model against its Bertrand counterpart, presented in subsection 6.6. Figure 20 replicates
(for both) the dotted black line of Figure 7, while Figure 21 does the same with the blue line of Figure 8.

Figure 20: Profit as % of Total Surplus (1996-2019)
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Figure 21: Deadweight Loss from Oligopoly (1996-2019)
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Profit Share of Surplus  (Cournot v/s Bertrand)

F.4. Comparison of Cournot Oligopoly and Bertrand Oligopoly

Figures 20 and 21 compare, respectively, the profit share (of total surplus) and the deadweight loss of the
baseline Cournot model against its Bertrand counterpart, presented in subsection 6.6. Figure 20 replicates
(for both) the dotted black line of Figure 7, while Figure 21 does the same with the blue line of Figure 8.
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● A new GE theory of oligopoly with hedonic demand.
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● A new GE theory of oligopoly with hedonic demand.

● Estimated for Compustat using 10-K product similarities.

● Distribution of markups is jointly determined by productivity 
and product market centrality.
▸ Both have undergone significant changes

● Rising Oligopoly Power
▸ increasing deadweight loss 
▸ lower consumer surplus share.

                                                            

Take-aways



Product Differentiation and Oligopoly: a Network Approach Bruno Pellegrino (Columbia Business School) 49

2

3

1

3
ˆ log TVC

ˆ log q

4≠1 pq

TVC¸ ˚˙ ˝
= |ˆ log q/ˆ log p|

|ˆ log q/ˆ log p| ≠ 1
¸ ˚˙ ˝

De Loecker & Warzynski (2012) Berry, Levinsohn & Pakes (1994)
(0.1)

log µit = –s + ·t + —‰it + xÕ� + Áit (0.2)
Û3

I + 1
2�

4
⇡ = q� = (2I + � + �)≠1 (b ≠ c) (0.3)

Û3
I + 1

2�
4
⇡ = q� = (I + �)≠1 (b ≠ c) (0.4)

1
ˆ log cq
ˆ log q

2≠1 pq
cq = |ˆ log q/ˆ log p|

|ˆ log q/ˆ log p|≠1 æ (0.5)

ˆ p
ˆ q © ≠ (I + �)

=

S

WWU

≠1 ≠.58 0
≠.58 ≠1 ≠.58

0 ≠.58 ≠1

T

XXV

ˆ q
ˆ p © ≠ (I + �)≠1

=

S

WWU

≠2 1.73 ≠1
1.73 ≠3 1.73
≠1 1.73 ≠2

T

XXV

1


